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Abstract

We consider complex scenarios involving two-way coupled interactions between compressible fluids and solid
bodies under extreme conditions where monolithic, as opposed to partitioned, schemes are preferred for
maintaining stability. When considering such problems, spurious numerical cavitation can be quite common
and have deleterious consequences on the flow field stability, accuracy, etc. Thus, it is desirable to devise
numerical methods that maintain the positivity of important physical quantities such as density, internal
energy and pressure. We begin by showing that for an arbitrary flux function, one can put conditions on
the time step in order to preserve positivity by solving a linear equation for density fluxes and a quadratic
equation for energy fluxes. Our formulation is independent of the underlying equation of state. After deriving
the method for forward Euler time integration, we further extend it to higher order accurate Runge-Kutta
methods. Although the scheme works well in general, there are some cases where no lower bound on the
size of the allowable time step exists. Thus, to prevent the size of the time step from becoming arbitrarily
small, we introduce a conservative flux clamping scheme which is also positivity preserving. Exploiting the
generality of our formulation, we then design a positivity preserving scheme for a semi-implicit approach to
time integration that solves a symmetric positive definite linear system to determine the pressure associated
with an equation of state. Finally, this modified semi-implicit approach is extended to monolithic two-way
solid-fluid coupling problems for modeling fluid structure interactions such as those generated by blast waves
impacting complex solid objects.

1. Introduction1

We consider simulating fluid structure problems, especially those involving complex interactions, which2

require the use of robust monolithic approaches [34, 14, 33, 11, 13] in order to guarantee stability and3

accuracy. In particular, we utilize the semi-implicit approach for compressible flow introduced in [22] and4

extended to two-way solid-fluid coupling in [14, 13]. When considering extreme scenarios such as blast waves5

interacting with complex objects, numerical schemes often fail when the density or internal energy becomes6

negative creating an imaginary value for the sound speed and a non-physical solution. To obtain physically7

admissible solutions, the density and the internal energy should remain positive. Numerical methods that8

guarantee positivity of these quantities at all times are called positivity preserving. In fact, many commonly9

used high order accurate schemes for solving systems of hyperbolic conservation laws [16, 37, 5, 25, 20, 6]10

are not positivity preserving.11

A common ad hoc approach for maintaining positivity is to clamp the density, pressure, or internal12

energy if any of these quantities goes below a certain threshold. However, this destroys local conservation13

and can produce highly inaccurate results, see e.g. [44]. Moreover, clamping a variable in one time step can14

lead to negativity of other variables in subsequent time steps. Although the density can be clamped in a15
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straightforward manner, it is not clear how to clamp the internal energy, i.e., should one clamp the total16

energy, the momentum, or both, etc. We experimented with several different options on a large number17

of difficult examples, but were unable to find a consistent approach that works well across all examples18

or was successfully advocated in the literature. The main difficulty we encountered was that clamping19

degrades the solution accuracy, and the degradation cascades destroying the entire solution. The most20

important negative consequence of clamping is that the resulting solution may actually seem to work just21

fine providing a plausible albeit completely wrong and misleading result. Consider, for example, a rigid block22

moving in a constant density gas producing a shock wave in front of it and a wake behind it. This example23

is considered and detailed in Sections 6.2 and 7.3. Figure 1(a) shows the results utilizing minimal clamping24

with lower bounds ρmin and emin in the equation of state and other calculations that require positive values,25

while leaving the values otherwise unchanged in order to maintain conservation. Although clamping is used26

on only a few grid cells for only a few time steps, the result is still quite inaccurate compared to the ground27

truth shown in Figures 9 and 19.28

(a) (b)

Figure 1: Density contours for the moving block example from Section 7.3 (a) clamping both the density and the internal
energy, and (b) using our method which adaptively clamps the time steps and the fluxes, and closely matches the ground truth.

For one-dimensional scalar conservation laws, the problem of designing robust high order accurate pos-29

itivity preserving schemes is well-posed, since the entropy solution satisfies the total variation diminishing30

(TVD) property [35, 39]. The TVD property is more difficult to enforce for multi-dimensional scalar con-31

servation laws; however, the entropy solution satisfies a strict maximum principle and high order accurate32

schemes which have this property have been designed [40, 42]. The compressible Euler equations are a33

system of hyperbolic conservation laws for which the entropy solution in general satisfies neither the TVD34

property nor the maximum principle. First order accurate schemes such as the Godunov exact Riemann35

solver [8], the Steger-Warming scheme [12], Einfeld’s modification [7] to the Harten-Lax-van Leer scheme [17],36

the Lax-Friedrichs scheme [30], and the Boltzmann type scheme [29] have been shown to be positivity pre-37

serving under a CFL-like condition. However, these schemes lose the positivity preserving property when38

extended to second order accuracy using flux limiters or MUSCL slope limiters [3]. Thus, various researchers39

have investigated the design of high order accurate schemes which maintain the positivity preserving prop-40

erty [30, 1, 2]. These methods are computationally quite expensive, and the CFL-like condition can be41

difficult to enforce in practice. Positivity preserving flux-limiting schemes have been proposed using the42

rule of positive coefficients [26, 27], which requires the coefficients of the discrete equations to have positive43

eigenvalues and eigenvectors identical to those of the Jacobian matrix for the corresponding flux vectors.44
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However, this method is limited to the gamma law gas equation of state. A positivity preserving limiter45

for high order accurate discontinuous Galerkin (DG) schemes on rectangular meshes was proposed in [41].46

This scheme was later extended to triangular meshes [45], to the Euler equations with source terms and a47

general equation of state [43], to high order ENO and WENO schemes [44], and to Lagrangian schemes for48

multi-material compressible flow [4].49

Instead of addressing positivity one scheme, order of accuracy, or equation of state at a time, our goal50

is to derive some general techniques that can be applied to any scheme and any flux function, similar in51

spirit to [19]. This is motivated in part by the increasing complexity of numerical methods as the community52

focuses on increasingly difficult problems including all speed flows and two-way solid-fluid coupling. We show53

that for an arbitrary flux function one can derive conditions on the time step that preserve positivity by54

solving a linear equation for density fluxes and a quadratic equation for internal energy. Although we only55

consider the gamma law gas equation of state, there are no assumptions within our formulation that limit its56

applicability to other equations of state. The scheme is first derived for forward Euler time integration and57

then extended to higher order accurate TVD Runge-Kutta methods [37, 38]. This is achieved by treating58

the intermediate Runge-Kutta updates as independent forward Euler steps so that the linear and quadratic59

equations can still be used. Though the approach works well in general, the lack of a lower bound on the size60

of the allowable time step can prove problematic in certain scenarios. Thus, we introduce a conservative flux61

clamping scheme which is applied locally in space and time in order to preserve positivity when one wishes to62

avoid any further refinement of the size of the time step. While this scheme does degrade the overall spatial63

accuracy of the solution (which can be avoided by combining the clamped flux with a first order accurate64

flux, see [19] for details), it readily generalizes to our main goal of applying this methodology to increasingly65

complex problems such as those arising in two-way coupled fluid structure interactions. Since these methods66

are most robust when monolithic, we also extend our method to a compressible flow solver that implicitly67

solves for a pressure consistent with the underlying equation of state. Subsequently, we demonstrate the68

efficacy of our approach on quite difficult problems involving two-way solid-fluid coupling. We modify the69

method of [33] to treat the mass in the solid-fluid region correctly, and also extend it to handle objects that70

are under-resolved on the background grid using ideas from [28].71

2. Compressible Euler equations72

The compressible Euler equations in multiple spatial dimensions are defined as follows73

Ut +∇ · F(U) =

 ρ
ρ~u
E


t

+∇ ·

 ρ~u
ρ~u⊗ ~u+ p
(E + p)~u

 = 0 (1)

where the conserved variables are the density ρ, momentum ρ~u, and the total energy E. The total energy74

can be written as75

E = ρe+
(ρ~u) · (ρ~u)

2ρ
(2)

where e is the internal energy per unit mass. A state U = (ρ, ρ~u,E) satisfies positivity if both ρ and e are76

positive, whilst ~u can be of any sign. For an arbitrary equation of state, the pressure p typically depends on77

ρ and e but not ~u. Let pρ and pe denote the partial derivatives of p with respect to ρ and e at constant ~u,78

then the sound speed c emanates from the eigenvalues of the Jacobian matrix,79

c =
√
pρ + ppe/ρ2. (3)

See e.g. [10] and the references therein.80
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3. Adaptive time step restriction81

Consider a forward Euler temporal update in one spatial dimension for cell i,82

ρn+1
i = ρni −∆t

Dni+1/2 −D
n
i−1/2

∆x
= ρni −∆tDn

i

(ρ~u)n+1
i = (ρ~u)ni −∆t

~Mn
i+1/2 − ~Mn

i−1/2

∆x
= (ρ~u)ni −∆t ~M

n

i

En+1
i = Eni −∆t

Eni+1/2 − E
n
i−1/2

∆x
= Eni −∆tEn

i . (4)

where Dni+1/2,
~Mn
i+1/2, and Eni+1/2 are the density, momentum, and energy fluxes at face i+ 1/2 at time tn,83

and Dn
i , ~M

n

i , and En
i are the density, momentum, and energy flux divided differences at grid cell i. We84

assume ∆tCFL is given by the regular CFL time step restriction, or is chosen based on accuracy concerns.85

In this section we further limit ∆t below ∆tCFL, if needed, to maintain positivity.86

If Dn
i is positive, the density is decreasing and for a large enough time step ρn+1

i will become negative.87

It is straightforward to choose a time step that maintains positivity of ρn+1
i . For the sake of accuracy and88

robustness, we limit the change in density during a time step so that it only shrinks to a fraction ερ of its89

initial value, i.e.,90

ρn+1
i = ρni −∆tDn

i ≥ ερρni

This equation can be rearranged to obtain a time step restriction,91

∆tρ = min
i∈Ωρ

∆tρi = min
i∈Ωρ

(1− ερ)ρni
Dn
i

(5)

where the minimum is taken over all grid cells for which Dn
i is greater than zero. If Dn

i is negative or zero92

for all cells i or ∆tρ ≥ ∆tCFL , then we use ∆tCFL as usual.93

Next, consider the internal energy en+1
i which we require to remain positive and not shrink beyond a94

constant factor εe of its initial value in any given time step. This gives rise to the following inequality95

en+1
i =

En+1
i

ρn+1
i

− ||(ρ~u)n+1
i ||2

2(ρn+1
i )2

=
Eni −∆tEn

i

ρni −∆tDn
i

− ||(ρ~u)ni −∆t ~M
n

i ||2

2(ρni −∆tDn
i )2

≥ εeeni (6)

Multiplying through by 2(ρni −∆tDn
i )2 gives the following quadratic inequality96

2(ρni −∆tDn
i )(Eni −∆tEn

i )− ||(ρ~u)ni −∆t ~M
n

i ||2 ≥ 2εee
n
i (ρni −∆tDn

i )2

Expanding out the terms and gathering the coefficients for ∆t2 and ∆t gives an inequality of the following97

form98

A∆t2 − 2B∆t+ C ≥ 0 (7)

where,99

A = 2Dn
i En

i − || ~M
n

i ||2 − 2εee
n
i (Dn

i )2 (8)

B = Dn
i E

n
i + ρni En

i − (ρ~u)ni · ~M
n

i − 2εee
n
i ρ

n
i Dn

i (9)

C = 2ρni (Eni − εeeni ρni )− ||(ρ~u)ni ||2 (10)

Substituting equation (2) into equation (10) gives a simplified expression for C as follows100

C = 2ρni

(
ρni e

n
i +
||(ρ~u)ni ||2

2ρni
− εeeni ρni

)
− ||(ρ~u)ni ||2 = 2(1− εe)eni (ρni )2 (11)
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Since ρni and eni are positive and εe < 1, C is always positive and the inequality (7) is always true when101

∆t = 0. Let ∆t1,∆t2 be the two roots when equation (7) is written with a strict equality1. If the roots are102

imaginary, inequality (7) always holds. Otherwise, assuming that ∆t1 < ∆t2, inequality (7) can be written103

as104

A(∆t−∆t1)(∆t−∆t2) ≥ 0 (12)

If A > 0, then the quadratic is concave up and inequality (12) is true when ∆t ∈ (−∞,∆t1] ∪ [∆t2,∞).105

Since ∆t1∆t2 = C/A, which is positive in this case, both roots are of the same sign. If B < 0 then both roots106

are negative, and no additional time step restriction is required. Otherwise if B > 0, then both roots are107

positive and we set ∆tei = ∆t1 = (B −
√
B2 −AC)/A, which is the smaller of the two roots. If A < 0, then108

the quadratic is concave down and inequality (12) holds when ∆t ∈ [∆t1,∆t2]. Since ∆t1∆t2 = C/A < 0 in109

this case, the roots differ in sign and we set ∆tei = (B−
√
B2 −AC)/A which is the positive root independent110

of the sign of B. Notice that we always choose the root (B −
√
B2 −AC)/A for all cases that have a time111

step restriction. Finally, we set ∆te = min
i∈Ωe

∆tei similar to equation (5), where Ωe is the set of cells where a112

minimum time step ∆tei was defined.113

It is typically important to consider the limiting cases when the coefficients approach zero, since they114

may lead to numerical inaccuracies. While C can approach zero only from the positive side, A and B can115

approach zero from either side. We consider all possible cases where C is large in Table 1, deferring the limit116

as C approaches 0 until Section 5. Here ‘� 0’ indicates a positive coefficient that is reasonably bounded away117

from zero, ‘� 0’ indicates a negative coefficient that is reasonably bounded away from zero, and ε denotes118

a small positive number approaching zero. Note that when A and B are small2, their sign can be uncertain119

due to numerical inaccuracies. Thus, we design a strategy that is valid irrespective of their sign. To aid in120

the understanding of the limiting values in Table 1, Figure 2 shows plots for the root (B −
√
B2 −AC)/A121

as a function of A and B.122

First, consider the cases where A approaches 0. Case 1 corresponds to the scenario where B � 0. The123

root approaches C/2B either from above or below as shown in Figure 2(a). Hence we use C/2B − δ as a124

robust root, where δ is a small number which can be chosen iteratively if necessary. On the other hand, when125

B � 0 as in Case 2 the inequality is always true as shown in Figure 2(b). Cases 3 and 4 correspond to B126

approaching zero while A is large in magnitude. The root in Case 3 is imaginary as shown in Figure 2(c).127

The root in Case 4 approaches
√
−C/A either from above or below as shown in Figure 2(d). Hence, similar128

to Case 1, we use
√
−C/A − δ as a robust root. Finally in Case 5, when A and B are both small, C129

dominates making the inequality always true.130

We choose the overall time step as131

∆t = min{∆tρ,∆te,∆tCFL} (13)

noting that in certain scenarios ∆t can become arbitrarily close to zero. This is addressed via the flux-limiting132

techniques presented in Section 5.133

1In practice, we found that using the quadratic formula

∆t =
B ±

√
B2 −AC
A

to compute the roots is prone to numerical errors when B is close in magnitude to
√
B2 −AC. Therefore, we use the common

approach of de-rationalizing the quadratic in order to compute the root which would potentially have catastrophic cancellation
(see for example [18]).

2One could use a constant threshold below which a number can be deemed as ‘small’ if everything occurs on the same scale.
Otherwise, a number that is ‘small’ can become significant just by scaling all the other numbers by a constant. Thus, we define
the concept of a number being ‘small’ in a more robust fashion as follows: we look at the magnitude of all terms on the right
hand side of equations (8), (9) and (10) and compare them with the magnitude of the result for A, B and C on the left hand
side. If the maximum magnitude on the right hand side is more than 12 orders of magnitude greater than the magnitude of the
left hand side, then we have less than three digits of accuracy on the result and we deem the left hand side coefficients (i.e. A,
B, and C) small and inaccurate with respect to double precision (which supports approximately 15 digits of accuracy)
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Case A B Root Robust ∆tei
1 ±ε � 0 C/2B +O(A) C/2B − δ
2 ±ε � 0 inequality always true ∆tCFL

3 � 0 ±ε imaginary ∆tCFL

4 � 0 ±ε
√
−C/A+O(B)

√
−C/A− δ

5 ±ε ±ε inequality always true ∆tCFL

Table 1: Limiting cases when the coefficients A and B approach zero while C is bounded away from zero. The Root column
denotes the limiting value of the root (B−

√
B2 −AC)/A. The Robust ∆tei column denotes the numerically robust value that

can be assigned to ∆tei . δ is a small positive number.

4. TVD Runge-Kutta134

We consider both second and third order accurate TVD Runge-Kutta (RK) temporal evolution [37, 38].135

First, note that if states U1 = (ρ1, ~m1, E1) and U2 = (ρ2, ~m2, E2) are positivity preserving, where ~m1 = (ρ~u)1136

and ~m2 = (ρ~u)2, then any linear combination aU1 + bU2 with a, b ≥ 0 is also positivity preserving. The137

density ρ = aρ1 + bρ2 is trivially positive. The potential energy can be written as138

ρe = aE1 + bE2 −
1

2

||a~m1 + b~m2||2

aρ1 + bρ2

= a

(
ρ1e1 +

||~m1||2

2ρ1

)
+ b

(
ρ2e2 +

||~m2||2

2ρ2

)
− 1

2

||a~m1 + b~m2||2

aρ1 + bρ2

= aρ1e1 + bρ2e2 +
1

2

(
a||~m1||2

ρ1
+
b||~m2||2

ρ2
− ||a~m1 + b~m2||2

(aρ1 + bρ2)

)
where the first two terms are obviously positive, and the last term can be rewritten as139

1

2(aρ1 + bρ2)ρ1ρ2
((aρ2||~m1||2 + bρ1||~m2||2)(aρ1 + bρ2)− ρ1ρ2||a~m1 + b~m2||2)

which can be shown to be equal to140

ab

2(aρ1 + bρ2)ρ1ρ2
||ρ1 ~m2 − ρ2 ~m1||2

which is always non-negative. Alternatively, noting that the potential energy is a concave function of141

conserved variables, its convex combination will not affect positivity due to Jensen’s inequality, similar in142

spirit to [41, 44].143

Figure 3(a) illustrates standard TVD RK-2. The scheme uses two forward Euler steps to compute the144

intermediate state φ̂n+2, before averaging φn and φ̂n+2 in order to obtain φn+1, i.e.,145

φn+1 =
φn + φ̂n+2

2
= φn + ∆t

(
φ̂n+2 − φn

2∆t

)
(14)

This update can equivalently be viewed as starting at the point φn and moving a distance ∆t along the slope146

(φ̂n+2 − φn)/(2∆t). Obviously, if φ̂n+2 is negative enough, then moving a distance ∆t along the slope will147

also produce negative values for φn+1. Instead, we compute each of the two forward Euler time steps using148

the positivity preserving adaptive time step restriction given in Section 3 to obtain149

φn+1 = φn + ∆t

(
φ̂n+2 − φn

∆t1 + ∆t2

)
(15)

in place of equation (14). This can be rewritten as150

φn+1 = φn + ∆t

(
∆t1L1 + ∆t2L2

∆t1 + ∆t2

)
(16)
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Figure 2: Representative plots for the maximum allowable time step size ∆tei . (a) ∆tei as a function of A for B > 0. B = C = 5
cross section is shown. Note that there is no restriction for A > B2/C (b) ∆tei as a function of A for B < 0. B = −5, C = 5
cross section is shown. Note that there is no restriction for A > 0. (c) ∆tei as a function of B for A > 0. A = C = 5 cross

section is shown. Note that there is no restriction for B <
√
AC. (d) ∆tei as a function of B for A < 0. A = −5, C = 5 cross

section is shown.

where L1 and L2 are the negative flux divided differences for the first and second Euler steps respectively.151

When compared to the conditions for TVD RK-2 from [37], we identify β21 = ∆t2/(∆t1 + ∆t2) and β10 =152

∆t1/∆t, and use the fact that 2β21β10 = 1 to obtain ∆t = 2∆t1∆t2/(∆t1 + ∆t2) or153

φn+1 = φn +
2∆t1∆t2

∆t1 + ∆t2

(
φ̂n+2 − φn

∆t1 + ∆t2

)
(17)

in place of equation (15) as our final TVD RK-2 scheme. Since 2∆t1∆t2 < (∆t1 + ∆t2)2, the coefficients of154

φn and φ̂n+2 are both positive, and so φn+1 is positivity preserving.155

As a test for the order of accuracy, we ran convergence analysis under temporal refinement on y′ = −y156

obtaining the expected results as shown in Table 2. We also provide a Taylor series analysis in Appendix I.157

Next, consider standard TVD RK-3 which takes two forward Euler steps to compute φ̂n+2 from φn, and158

then computes φ̂n+1/2 as159

φ̂n+1/2 =
3

4
φn +

1

4
φ̂n+2 = φn +

∆t

2

(
φ̂n+2 − φn

2∆t

)
(18)
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∆t

φn

φ̂n+1

φ̂n+2

φn+1

∆t

∆t2

φn

φ̂n+1

φ̂n+2

φn+1

∆t1

2∆t1∆t2
∆t1+∆t2

(a) (b)

Figure 3: (a) Standard TVD RK-2 where states above the red line are positivity preserving. In the traditional scheme, φ̂n+1

can be guaranteed to be positive using our adaptive time restriction. However, since the time step for the second RK step is the
same as the first, φ̂n+2 can be negative potentially making the state φn+1 negative as well. (b) Our newly proposed TVD RK-2
where states above the red line are positivity preserving. This method computes a positivity preserving state φn+1 by taking
two different adaptive time steps ∆t1 and ∆t2, and subsequently moving along the slope by the distance 2∆t1∆t2/(∆t1 +∆t2).

Our RK-2 with fixed ∆t2 Our RK-2 with variable ∆t2 Standard RK-2
∆t1 error convergence error convergence error convergence
×10−2 order order order
1 2.01503e-06 - 2.6709e-06 - 4.54522e-06 -
.5 5.02497e-07 2.00362 6.70571e-07 1.99386 1.13204e-06 2.00543
.25 1.25467e-07 2.00181 1.6724e-07 2.00347 2.82478e-07 2.00271
.125 3.13472e-08 2.0009 4.20045e-08 1.9933 7.05533e-08 2.00135
.0625 7.83435e-09 2.00045 1.0511e-08 1.99864 1.763e-08 2.00068
.03725 1.95828e-09 2.00022 2.61701e-09 2.00591 4.40648e-09 2.00034
.018625 4.89532e-10 2.00011 6.5513e-10 1.99807 1.10149e-09 2.00017

Table 2: Temporal convergence orders for the proposed version of TVD RK-2 for y′ = −y. Here we choose ∆t2 = .5∆t1 and
show the errors and convergence orders in the second and third columns. The next two columns show results when choosing
∆t2 = k∆t1 where k ∈ [0, 1] is randomly generated each time step. The results obtained using standard TVD RK-2 are also
shown for the sake of comparison in the last two columns.

It then takes another forward Euler step to compute φ̂n+3/2 from φ̂n+1/2, and finally computes φn+1 as160

φn+1 =
2

3
φ̂n+3/2 +

1

3
φn = φn + ∆t

(
φ̂n+3/2 − φn

3∆t/2

)
(19)

Although it is desirable to have a scheme similar to TVD RK-2 where all the Euler steps can be taken with161

arbitrary time step sizes in order to preserve positivity, we show in Appendix II that such a scheme is not162

practical or even necessarily feasible. Hence, we propose the following alternative scheme: The first Euler163

step is taken with a time step ∆t1 that is positivity preserving. If the time step restriction computed for the164

second Forward Euler step ∆t2 ≥ ∆t1, then we set ∆t2 = ∆t1. Otherwise, if ∆t2 < ∆t1, we rewind φ back165

to φn and take the first Euler step with the time step ∆t1/2 (repeating if necessary). Similarly, for the third166

Euler step, if the computed time step ∆t3 ≥ ∆t1, then we set ∆t3 = ∆t1. Otherwise, if ∆t3 < ∆t1, we rewind167

the state φ back to φn and take the first Euler step with the time step ∆t1/2 (again, repeating if necessary).168

The resulting scheme is the standard TVD RK-3 scheme with a time step that is positivity preserving for169

all three Euler steps. In scenarios where this time step becomes smaller than a desirable threshold, we do170

not clamp the time step further but instead clamp the fluxes as is discussed next in Section 5.171
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Case A B C Root Robust ∆tei
1 � 0 � 0 ε C/2B +O(C2) 0
2 � 0 � 0 ε inequality always true ∆tCFL

3 � 0 � 0 ε C/2B +O(C2) 0
4 � 0 � 0 ε 2B/A+ |O(C)| 2B/A
5 ±ε � 0 ε C/2B +O(AC2) 0
6 ±ε � 0 ε inequality always true ∆tCFL

7 � 0 ±ε ε O(B/A) or imaginary 0

8 � 0 ±ε ε
√
−C/A+O(B) +O(C1/2) 0

9 ±ε ±ε ε highly uncertain 0

Table 3: Limiting cases when C is a small positive number approaching zero. The Root column denotes the limiting value of
the root (B −

√
B2 −AC)/A. The Robust ∆tei column denotes the numerically robust value that can be assigned to ∆tei .

5. Flux clamping172

Here we consider the remaining limiting cases for roots of the inequality (7), which occur as C approaches173

zero. In these cases, either the internal energy e or the density ρ, or both, approach zero as can be seen from174

equation (11). An extremely small time step may be required when C approaches zero as shown in Cases 1175

and 4 in Table 1. Table 3 enumerates all possible cases for A and B as C approaches zero. When B � 0,176

the root approaches C/2B as shown in Case 1, Case 3, and Case 5, and there is no robust positive root.177

When B � 0, the inequality is either always true or the root approaches 2B/A from above as shown in178

Case 2, Case 4, and Case 6. Case 7 has two sub-cases. Either B2 < AC and the root is imaginary, or179

the root is small and positive. Since it is not possible to distinguish between the two cases, we must set the180

robust root to zero. Case 8 also requires a robust root of zero. Finally, when all three coefficients approach181

zero, the root is highly uncertain and the only robust root is zero.182

In several cases, positivity dictates that the robust time step be driven to zero. As can be seen from183

equation (4) one could alternatively clamp the flux divided differences. However, this may violate conser-184

vation since fluxes affect multiple grid cells. Alternatively, one could clamp the fluxes at individual faces185

in order to maintain a larger time step; however, this results in a globally coupled problem as every flux186

affects its left and right cells. To remedy this, given the dimension d we make 2d co-located copies of the187

cell called “sub-cells”, assign each sub-cell 1/(2d) of the mass, momentum, and energy, and associate each188

sub-cell with a unique flux face. This decouples the problem and allows the flux at each face to be clamped189

independently. We keep a global threshold ∆tg for the size of the minimum allowable time step, and clamp190

the fluxes whenever the time step size becomes less than ∆tg.191

Assume that the density, momentum, and energy in sub-cell i are ρ̂ni = ρni /(2d), (ρ̂u)ni = (ρu)ni /(2d) and192

Êni = Eni /(2d) respectively. Consider the density flux Dni+1/2 at face i+ 1/2. We clamp this flux such that193

ρ̂i remains at least ερρ̂
n
i , i.e., we compute ∆t such that194

ρ̂ni −∆tDni+1/2/∆x ≥ ερρ̂
n
i . (20)

This is done for both the left and right sub-cells obtaining ∆tleft and ∆tright respectively. Then the flux195

Dni+1/2 is scaled down by a factor of ∆tmin/∆tg = min(∆tright,∆tleft)/∆tg, guaranteeing positivity when196

we take the global time step ∆tg. Doing this for all 2d sub-cells guarantees that the parent cell has density197

at least 2dερρ̂
n
i = ερρ

n
i after the temporal update.198

The internal energy at time tn+1 should not shrink below εeê
n
i yielding the inequality199

ên+1
i =

Ên+1
i

ρ̂n+1
i

− ||(ρ̂u)n+1
i ||2

2(ρ̂n+1
i )2

=
Êni −∆tEni+1/2/∆x

ρ̂ni −∆tDni+1/2/∆x
−
||(ρ̂u)ni −∆t ~Mn

i+1/2/∆x||
2

2(ρ̂ni −∆tDni+1/2/∆x)2
≥ εeên (21)

which has a one to one correlation with inequality (6) after grouping various terms. Thus we can solve an200

equivalent inequality (7) to find a robust time step ∆t. Similar to the density as described above, Dni+1/2,201
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~Mn
i+1/2 and Eni+1/2 are then scaled down by a factor of ∆tmin/∆tg if necessary. It is important to note202

that while solving inequality (21) via inequality (7), Tables 1 and 3 give the robust time step which is often203

identically zero. Unlike in Section 3 where this would have driven the time step to zero, here we are able204

to maintain ∆t ≥ ∆tg and instead drive the flux to zero for the poorly behaved cases in Table 3. For our205

examples ∆tg was chosen as a fraction of the time step size dictated by applying the standard CFL restriction206

for the explicit scheme to the initial conditions, ensuring that the actual time steps had the same order of207

magnitude compared to those that the explicit scheme would have taken. This strategy worked well for all208

our examples because the velocity ‖ |u| + c ‖∞ was highest initially and the flow smoothed out over time,209

making the initial conditions the most complex to resolve for positivity preservation. However, one could210

employ a different strategy for fluid flows that start slow and develop high speed non-linearities over time.211

A straightforward approach would be to clamp all the fluxes using the minimum of the density and212

internal energy scaling factors, and this is indeed what we do when the internal energy scaling factor is more213

restrictive. However, when the density scaling factor is more restrictive, we first try to clamp the density flux214

only and recompute the scaling factor for internal energy using the newly clamped density flux in inequality215

(21). If the recomputed scaling factor for internal energy is less restrictive than the original internal energy216

scaling factor, then we further clamp all fluxes with the newly recomputed scaling factor. Otherwise, if the217

recomputed scaling factor for internal energy is more restrictive than the original one, we simply stick with218

the straightforward approach of using the minimum of the density and internal energy scaling factors.219

6. Numerical results - explicit time integration220

We have thoroughly tested a large number of examples as well as parameters, and report on a repre-221

sentative sampling of those tests here. We utilized both ENO-LLF and ENO-RF [38] and varied the order222

of accuracy of both the ENO scheme and the TVD-RK scheme between 1 and 3. Although our method is223

valid for any equation of state, we used the gamma law gas p = (γ − 1)ρe, with γ = 1.4. The constants224

ερ and εe were set to .5 in all examples. [44] proposed a positivity limiter for third order accurate ENO225

and third order accurate TVD-RK which guarantees positivity preservation under the time step restriction226

(∆t/∆x) ‖ |u| + c ‖∞≤ 1/6. To compare with the time steps that would have been taken by their scheme,227

we also plot the curve ∆t = ∆x/(6 ‖ |u| + c ‖∞), but note that our plot may be slightly different from228

that of [44] because u and c vary according to the numerical method, truncation errors, time steps, and grid229

resolutions.230

6.1. One-dimensional examples231

The Sedov blast wave is a typical problem where a shock at the center of the domain drives the density232

to zero analytically [21, 36]. The computational domain is [−2, 2]. Initially, ρ = 1, u = 0, and E = 10−12
233

everywhere except the center cell where E = 3, 200, 000/∆x. Figure 4 depicts the solution obtained using234

ENO-LLF-3, TVD-RK-1, and CFL=.5 with our adaptive time step restriction. Without our adaptive time235

step restriction this choice of scheme and parameters is unable to run to completion. Figure 4 (bottom236

right) compares our adaptive time step size to that taken by the scheme using ENO-LLF-1, TVD-RK-1, and237

CFL=.5, which is a selection of parameters that allows the code to run to completion without our adaptive238

time step restriction. Resolutions 6400 and 12800 also required flux clamping, and we used ∆tg = 1× 10−9
239

and ∆tg = 5× 10−10 respectively.240

Next, consider the double rarefaction problem [23, 41] where a very low density is generated in the center241

of the domain. Initial conditions are ρL = ρR = 7, uL = −1, uR = 1, and pL = pR = .2, with the242

discontinuity at x = 0. Figure 5 depicts the solution obtained using ENO-RF-3, TVD-RK-2, and CFL=.6243

with our adaptive time step restriction. This choice of scheme and parameters is unable to run to completion244

without our adaptive time step restriction. Figure 5 (bottom right) compares our adaptive time step size245

to that taken by the scheme using ENO-RF-1, TVD-RK-2, and CFL=.6, which is a selection of parameters246

that allows the code to run to completion without our adaptive time step restriction.247

Consider the Leblanc shock tube problem where the initial conditions are ρL = 2, ρR = .001, uL = uR = 0,248

pL = 109, and pR = 1, with the discontinuity at x = 0. Figure 6 depicts the solution obtained using249

10



ENO-LLF-3, TVD-RK-3, and CFL=.7 with our adaptive time step restriction. This choice of scheme and250

parameters is unable to run to completion without our adaptive time step restriction. Figure 6 (bottom251

right) compares our adaptive time step size to that taken by the scheme using ENO-LLF-1, TVD-RK-3, and252

CFL=.7, which is a selection of parameters that allows the code to run to completion without our adaptive253

time step restriction.254

Consider the shock reflection problem at hypervelocities with initial conditions ρL = ρR = 1, uL = 3000,255

uR = 1000, and pL = pR = 104, with the discontinuity at x = 0. Figure 7 depicts the solution obtained256

using ENO-LLF-3, TVD-RK-2, and CFL=.8 with our adaptive time step restriction. This choice of scheme257

and parameters is unable to run to completion without our adaptive time step restriction. Figure 7 (bottom258

right) compares our adaptive time step size to that taken by the scheme using ENO-LLF-1, TVD-RK-2, and259

CFL=.8, which is a selection of parameters that allows the code to run to completion without our adaptive260

time step restriction. Resolutions 6400 and 12800 also required flux clamping, and we used ∆tg = 1× 10−8
261

and ∆tg = 5× 10−9 respectively.262

Figure 4: Numerical profiles for the one dimensional Sedov blast wave problem at t = .001 using ENO-LLF-3, TVD-RK-1,
and CFL=.5 with our adaptive time step restriction. The profiles converge to the analytic solution (shown in red) under grid
refinement.

Finally, consider the vacuum generation problem at hypervelocities [26, 27]. Initial conditions are ρL =263

ρR = .35, uL = 1000, uR = 3000, and pL = pR = 104. Figure 8 depicts the solution obtained using264

ENO-LLF-3, TVD-RK-2, and CFL=.75 with our adaptive time step restriction. This choice of scheme and265
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Figure 5: Numerical profiles for the one-dimensional double rarefaction problem at t = .6 using ENO-RF-3, TVD-RK-2, and
CFL=.6 with our adaptive time step restriction. The profiles converge to the analytic solution (shown in red) under grid
refinement.
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Figure 6: Numerical profiles for the 1D Leblanc shock tube at t = .0001 using ENO-LLF-3, TVD-RK-3, and CFL=.7 with our
adaptive time step restriction. The results converge to the analytic solution (shown in red) under grid refinement. Note that
the density and internal energy were plotted on a log scale so that the interesting features were not inordinately compressed.

13



Figure 7: Numerical profiles for the 1D shock reflection problem at hypervelocities at t = .0002 using ENO-LLF-3, TVD-RK-2,
and CFL=.8 with our adaptive time step restriction.
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Figure 8: Numerical profiles for the 1D vacuum generation problem at hypervelocities at t = .0001 using ENO-LLF-3, TVD-
RK-2, and CFL=.75 with our adaptive time step restriction. The results converge to the analytic solution (shown in red) under
grid refinement.
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parameters is unable to run to completion without our adaptive time step restriction. Figure 8 (bottom266

right) compares our adaptive time step size to that taken by the scheme using ENO-LLF-1, TVD-RK-267

2, and CFL=.75, which is the selection of parameters that allows the code to run to completion without268

adaptive time step restriction. Resolutions 3200, 6400, and 12800 also required flux clamping, and we used269

∆tg = 1× 10−8, ∆tg = 5× 10−9, and ∆tg = 2.5× 10−9 respectively.270

6.2. Two-dimensional examples271

We simulated a kinematic square block with side length .4 initially centered at x = .2 and moving in the272

positive x-direction with a speed of 5. The computational domain is [−5, 5] × [−5, 5], and initially ρ = 1,273

u = 0, and p = 1 everywhere. Figure 9(left) shows 30 equally spaced density contours between ρ = 0274

and ρ = 5 at t = .8 obtained using ENO-LLF-2, TVD-RK-3, and CFL=.5 with our adaptive time step275

restriction. This choice of scheme and parameters is unable to run to completion without our adaptive time276

step restriction. Figure 9(right) shows the density contour of ρ = 1.25 at t = .8 at various resolutions to277

illustrate convergence under grid refinement. The black contour shows the ground truth achieved by the278

scheme using ENO-LLF-3, TVD-RK-1, and CFL=.5, which is a selection of parameters that allows the code279

to run to completion without our adaptive time step restriction.280

Figure 9: The kinematic block moving in the positive x-direction (left) 30 equally spaced density contours between ρ = 0 and
ρ = 5 at t = .8. Note that the color map only goes from ρ = 0 to ρ = 1.5 to accentuate the details behind the block. (right)
Density contour of ρ = 1.25 at t = .8 at various resolutions to illustrate convergence under grid refinement.

Consider a shock diffracting over a backward facing corner as in [6, 41, 44]. The computational domain281

is [0, 13] × [0, 11] with a corner given by [0, 1] × [0, 6]. The initial condition is a pure right-moving shock of282

Mach number 5.09 initially located at x = .5. The air in front of the shock is at rest with ρ = 1.4 and p = 1.283

The boundary conditions are inflow at x = 0 and reflective everywhere else. Figure 10(left) shows 60 equally284

spaced density contours between ρ = 0 and ρ = 6 at t = 2.3 obtained using ENO-LLF-3, TVD-RK-3, and285

CFL=.7 with our adaptive time step restriction. This choice of scheme and parameters is unable to run to286

completion without our adaptive time step restriction. Figure 10(right) shows the density contour of ρ = 1.5287

at various grid resolutions to illustrate convergence under grid refinement. Note that the results are similar288

to those in the literature [6, 41, 44]. This example required flux clamping, and we used ∆tg = 1× 10−3 for289

resolution 130× 110 and successively halved ∆tg each time the resolution was doubled.290

Consider a channel with a computational domain of [0, 2]×[0, .5], where the bottom has three solid humps291

defined by y = .2 sin(3πx), similar to [27]. We make higher humps to create a more difficult problem forcing292
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Figure 10: The shock diffraction problem where a shock passes a backward facing corner [6, 41, 44] (left) 60 equally spaced
density contours between ρ = 0 and ρ = 6 at t = 2.3. (right) Density contour of ρ = 1.5 at t = 2.3 at various resolutions to
illustrate convergence under grid refinement.

Figure 11: A wavy wall channel similar to [27]. (top) 40 equally spaced density contours between ρ = 0 and ρ = .3 at t = .0036.
(bottom) Density contour of ρ = .16 at t = .0011 at various resolutions to illustrate convergence under grid refinement.
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Figure 12: The two dimensional enclosure problem [27]. (top) 60 equally spaced density contours from ρ = 0 to ρ = 6 at
t = .00075. (bottom) Density contour of ρ = .05 at t = .00075 at various grid resolutions to illustrate convergence under grid
refinement.
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a wider range of parameters to not run to completion. Initial conditions are p = 104 , ρ = .1, and v = 0293

everywhere. If x ≤ 1, then u = 100 , otherwise u = 10. The boundary conditions are reflective everywhere.294

Figure 11(top) shows 40 equally spaced density contours between ρ = 0 and ρ = .3 at t = .0036 obtained295

using ENO-LLF-3, TVD-RK-2, and CFL=.5 with our adaptive time step restriction. This choice of scheme296

and parameters is unable to run to completion without our adaptive time step restriction. Figure 11(bottom)297

shows the density contour of ρ = .16 at various resolutions to illustrate convergence under grid refinement.298

This example required flux clamping, and we used ∆tg = 1× 10−6 for scale 200× 50 and successively halved299

∆tg each time the resolution was doubled.300

Consider the enclosure problem [27] with computational domain of [−1, 1] × [0, 1], with a block located301

within [−.52, 0] × [0, .24]. Initial conditions are p = 104, ρ = .1, and u = 100 everywhere. If x ≤ 0, then302

v = −1000, otherwise v = 1000 . Figure 12(top) shows 60 equally spaced density contours between ρ = 0303

and ρ = 6 at t = .00075 obtained using ENO-LLF-3, TVD-RK-3, and CFL=.5 with our adaptive time304

step restriction. This choice of scheme and parameters is unable to run to completion without our adaptive305

time step restriction. Figure 12(bottom) shows the density contour of ρ = .05 at t = .00075 at various306

resolutions to illustrate convergence under grid refinement. This example required flux clamping, and we307

used ∆tg = 5×10−7 for resolution 100×50 and successively halved ∆tg each time the resolution was doubled.308

7. Semi-implicit time integration309

We follow the semi-implicit framework of [22] where the flux vector was split into an advection part and310

a non-advection part311

F1(U) =

 ρ~u
ρ~u⊗ ~u
E~u

 , F2(U) =

 0
p
p~u

 (22)

The advection part is integrated explicitly to obtain intermediate values ρ?, (ρ~u)?, and E?. Since the312

continuity equation is independent of the pressure ρn+1 = ρ?. Note that we utilize the adaptive time step313

restriction and flux clamping techniques as outlined in Sections 3 and 5, to ensure that this update is positivity314

preserving. It is straightforward to use TVD-RK in order to improve the efficacy of the advection-only step.315

The non-advection momentum and energy updates are316

(ρ~u)n+1 − (ρ~u)?

∆t
= −∇p, En+1 − E?

∆t
= −∇ · (p~u) (23)

Dividing the momentum update equation by ρn+1 results in317

~un+1 = ~u? −∆t
∇pn+1

ρn+1
(24)

and taking the divergence gives318

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇pn+1

ρn+1

)
(25)

Then the pressure evolution equation [9]319

pt + ~u · ∇p = −ρc2∇ · ~u (26)
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is semi-discretized by fixing ∇ · ~u to time tn+1, and the equation of state is used to compute the advected320

pressure pa = p? = p(ρ?, e?) as in [13]. Substituting p? into the semi-discretized form of equation (26) gives321

pn+1 = p? −∆tρc2∇ · ~un+1 (27)

Finally, combining equations (25) and (27) results in322

pn+1 −∆t2ρn(c2)n∇ ·
(
∇pn+1

ρn+1

)
= p? −∆tρn(c2)n∇ · ~u? (28)

where the term ρc2 has been fixed to time tn. The ρn(c2)n terms are assembled into a diagonal matrix323

P = [∆t2ρn(c2)n] and the gradient and divergence operators are discretized to obtain the following system324

of equations325

[P−1 +∇T (ρn+1
f )−1∇]p̃n+1 = P−1p̃? +∇T~u?f (29)

where ∇ now denotes the discretized gradient operator and −∇T denotes the corresponding discretized326

divergence operator. Here p̃ = p∆t and327

(ρn+1
f )i+1/2 =

ρn+1
i + ρn+1

i+1

2
, (~u?f )i+1/2 =

( ~ρu)?i + ( ~ρu)?i+1

ρn+1
i + ρn+1

i+1

(30)

Note that the identity term (P−1) in equation (29) allows for the efficient solution of cell-centered pressure328

values using fast solvers such as preconditioned conjugate gradient (PCG). Subsequently, the post advection329

(time t∗) state is updated in a conservative flux-based manner via the flux F2(U) = (0, pf , pf~u)T . To330

construct F2, face pressures are computed via331

(p̃n+1
f )i+1/2 =

ρn+1
i p̃n+1

i+1 + ρn+1
i+1 p̃

n+1
i

ρn+1
i + ρn+1

i+1

(31)

and face velocities are computed by rewriting equation (24) using face-averaged quantities332

~un+1
f = ~u?f − (ρn+1

f )−1∇p̃n+1 (32)

Similar to equation (4) the flux-based implicit update then takes the form333

Un+1
i = U∗i −∆t

F2(U)i+1/2 − F2(U)i−1/2

∆x
(33)

It is rather complicated to maintain positivity when dealing with the non-advection fluxes since they334

were solved for implicitly. Our aforementioned strategy which was designed to include the ability to deal335

with arbitrary fluxes becomes quite useful in such a situation. For the sake of exposition, algorithm 1336

demonstrates the pseudo code of our modified approach for handling semi-implicit compressible flow (for337

TVD RK-2). First we store/cache the time tn state (step 2). Then, as mentioned above, we use our adaptive338

time step restriction for updating the state Un to U? with the advection fluxes F1(U) and the time step339

∆tadv (steps 4 through 7). Then, we use ∆tadv to implicitly solve for the non-advection fluxes F2(U) (steps340

8 and 9). Next, we compute the total flux F1(U) + F2(U) (step 10) and restore the current state back to341

its cached version, i.e. Un. We then use our adaptive time step restriction and flux clamping technique on342

the state Un where the total flux is assumed to be F1(U) + F2(U), thereby ensuring positivity preservation343

(steps 11 through 17). Note that this requires the fluxes and not the flux divided differences. Also note that344

computing the effective advection fluxes F1(U) requires the proper averaging of the individual fluxes from345

each TVD-RK step (steps 4 through 6). For example, for TVD-RK-2, the linearity of equation (16) allows346

us to write the effective advection flux as347

F1(U) =
∆t1F11(U) + ∆t2F12(U)

∆t1 + ∆t2
. (34)

where F11(U) and F12(U) are the fluxes in each of the two Euler steps. The effective flux for TVD RK-3 is348

computed similarly.349
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Algorithm 1 Simulation Loop

1: while time < ttarget do
2: Compute the time step size ∆t.
3: Usave = Un.
4: Update Un with a positivity preserving forward Euler step of size ∆t1 and fluxes F11.
5: Take another positivity preserving forward Euler step of size ∆t2 and fluxes F12.
6: Compute the effective advection flux F1(U) as described in equation (34).
7: Compute ∆tadv = 2∆t1∆t2

∆t1+∆t2
.

8: Solve the system in equation (29) with ∆t = ∆tadv to obtain the pressure p.
9: Use p along with the updated face velocities to construct the projection flux F2(U) = (0, pf , pf~uf )T .

10: Compute the effective flux Feff = F1(U) + F2(U).
11: Use adaptive time step restriction on U = Usave with fluxes Feff to obtain ∆tfinal.
12: if ∆tfinal < ∆tg then
13: ∆tfinal = ∆tg
14: Perform flux clamping on Feff to obtain F̂eff

15: end if
16: Update Usave to Un+1 with time step ∆tfinal and fluxes F̂eff similar to equation (33)
17: time +=∆tfinal.
18: end while

7.1. Moving Objects350

Throughout the paper, static objects are handled by filling ghost cells inside the solid using standard351

reflective boundary conditions. In the case of moving objects, one should advance the rigid bodies to time352

tn+1 after/during advection but before solving the implicit system for the pressure. Unfortunately, this does353

not work well here because F2(U) is required to determine the size of the time step implying that we do not354

know the final location of the object prior to computing F2(U). Thus, we use time-splitting alternatively355

updating the compressible flow and advancing the object, i.e., at the end of the time step we fill ghost cells356

inside the object, advance the object’s position, and finally fill ghost cells inside the object again to prepare357

for the next advection step.358

7.2. One-dimensional experiments359

For the Sedov blast wave problem, Figure 13 depicts the solution obtained using ENO-LLF-3, TVD-360

RK-2, and CFL=.5 with our adaptive time step restriction for semi-implicit time integration. Without our361

adaptive time step restriction this choice of scheme and parameters is unable to run to completion. This362

example required flux clamping, and we used ∆tg = 10−7 for resolution 400 and successively halved ∆tg each363

time the resolution was doubled. Figure 13 (bottom right) shows the time and location where flux clamping364

occurred.365

In addition, Figure 14 compares our adaptive time step size to that taken by the scheme using ENO-LLF-366

1, TVD RK-2, and CFL=.5, which is a selection of parameters that allows the code to run to completion367

without our adaptive time step restriction. We also show the time steps sufficient for maintaining positivity368

using the method of [44]. Note that our method does not severely restrict the large time steps allowed by369

the semi-implicit scheme, and the time steps keep becoming larger as the flow smooths out over time.370

For the double rarefaction problem, Figure 15 depicts the solution obtained using ENO-LLF-3, TVD-371

RK-3, and CFL=.5 with our adaptive time step restriction for semi-implicit time integration. Without our372

adaptive time step restriction this choice of scheme and parameters is unable to run to completion. This373

example required flux clamping, and we used ∆tg = 10−3 for resolution 400 and successively halved ∆tg each374

time the resolution was doubled. Figure 15 (bottom right) shows the time and location where flux clamping375

occurred.376

For the shock reflection problem at hypervelocities, Figure 16 depicts the solution obtained using ENO-377

LLF-3, TVD-RK-2, and CFL=.6 with our adaptive time step restriction for semi-implicit time integration.378
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Figure 13: Numerical profiles for the one dimensional Sedov blast wave problem at t = .001 using ENO-LLF-3, TVD-RK-2,
and CFL=.5 with our adaptive time step restriction. The profiles converge to the analytic solution (shown in red) under grid
refinement.

Without our adaptive time step restriction this choice of scheme and parameters is unable to run to comple-379

tion. Resolutions 3200, 6400, and 12800 also required flux clamping, and we used ∆tg = 10−8, ∆tg = 5×10−9,380

and ∆tg = 2.5×10−9 respectively. Figure 16 (bottom right) shows the time and location where flux clamping381

occurred.382

Remark: This example encountered a case in Table 3 where the robust time step was 0 when our383

adaptive time step restriction was used without flux clamping. However, when flux clamping was used with384

∆t = ∆tg, a positive density and internal energy was obtained without the need for any actual clamping -385

which is why Figure 16 (bottom right) does not show any clamped fluxes. In other words, our adaptive time386

step restriction is sometimes already sufficient as long as ∆t is set to ∆tg.387

For the Leblanc shock tube problem, Figure 17 depicts the solution obtained using ENO-LLF-3, TVD-388

RK-2, and CFL=.65 with our adaptive time step restriction for semi-implicit time integration. Without389

our adaptive time step restriction this choice of scheme and parameters is unable to run to completion.390

Resolutions 3200, 6400, and 12800 also required flux clamping, and we used ∆tg = 10−8, ∆tg = 5 × 10−9,391

and ∆tg = 2.5×10−9 respectively. Figure 17 (bottom right) shows the time and location where flux clamping392

occurred.393

7.3. Two-dimensional experiments394

We simulated the two-dimensional Sedov blast wave problem for which the computational domain is a395

square. Initially density is 1, velocity is zero, and total energy is 10−12 everywhere except for the lower396
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Figure 14: Time steps taken using our adaptive time step restriction with ENO-LLF-3, TVD-RK-2 and CFL=.5 for the Sedov
blast wave problem (red), while those taken with ENO-LLF-1, TVD-RK-2 and CFL=.5 are shown in blue (which is a selection
of parameters that allows the code to run to completion without our adaptive time step restriction). Time steps sufficient for
maintaining positivity using the method of [44] are shown in green.

left corner cell where it is the constant .244816
∆x∆y . The left and bottom edge of the domain have reflecting397

boundary conditions. Figure 18(left) shows 60 equally spaced density contours between ρ = 0 and ρ = 6398

at t = 1 obtained using ENO-LLF-3, TVD-RK-2, and CFL=.6 with our adaptive time step restriction for399

semi-implicit time integration. This choice of scheme and parameters is unable to run to completion without400

our adaptive time step restriction. Figure 18(right) shows the density contour of ρ = 4 at various grid401

resolutions to illustrate convergence under grid refinement. This example required flux clamping, and we402

used ∆tg = 1 × 10−4 for resolution 100 × 100 and successively halved ∆tg each time the resolution was403

doubled. Numerical results, shown in Figure 18, are comparable to those in the literature [24, 41].404

For the moving block problem, Figure 19(left) shows 30 equally spaced density contours between ρ = 0 and405

ρ = 5 at t = .8 obtained using ENO-LLF-3, TVD-RK-3, and CFL=.5 with our adaptive time step restriction406

for semi-implicit time integration. This choice of scheme and parameters is unable to run to completion407

without our adaptive time step restriction. Figure 19(right) shows the density contour of ρ = 1.25 at t = .8408

at various resolutions to illustrate convergence under grid refinement. This example required flux clamping,409

and we used ∆tg = 1 × 10−3 for resolution 100 × 100 and successively halved ∆tg each time the resolution410

was doubled. The black contour shows the ground truth computed by the explicit scheme using ENO-LLF-411
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Figure 15: Numerical profiles for the one-dimensional double rarefaction problem at t = .6 using ENO-LLF-3, TVD-RK-3,
and CFL=.5 with our adaptive time step restriction. The profiles converge to the analytic solution (shown in red) under grid
refinement.
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Figure 16: Numerical profiles for the shock reflection problem at hypervelocities at t = .0002 using ENO-LLF-3, TVD-RK-2,
and CFL=.6 with our adaptive time step restriction. The profiles converge under grid refinement.
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Figure 17: Numerical profiles for the one-dimensional Leblanc shock tube problem at t = .0001 using ENO-LLF-3, TVD-RK-2,
and CFL=.65 with our adaptive time step restriction. The profiles converge to the analytic solution (shown in red) under grid
refinement.
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(a) (b)

(c)

Figure 18: Two-dimensional Sedov blast wave problem. (a) 60 equally spaced density contours between ρ = 0 and ρ = 6 at
t = 1. (b) Density contour of ρ = 4 at t = 1 at various resolutions to illustrate convergence under grid refinement. (c) A
one-dimensional cutaway to illustrate the good agreement of our computed numerical solution on a 1600× 1600 grid compared
to the analytic solution.
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Figure 19: The kinematic block moving in the positive x-direction (left) 30 equally spaced density contours between ρ = 0 and
ρ = 5 at t = .8. Note that the color map only goes from ρ = 0 to ρ = 1.5 to accentuate the details behind the block. (right)
Density contour of ρ = 1.25 at t = .8 at various resolutions to illustrate convergence under grid refinement.

Figure 20: The shock diffraction problem where a shock passes a backward facing corner [6, 41, 44] (left) 60 equally spaced
density contours between ρ = 0 and ρ = 6 at t = 2.3. (right) Density contour of ρ = 1.5 at t = 2.3 at various resolutions to
illustrate convergence under grid refinement.
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Figure 21: A wavy wall channel similar to [27]. (top) 40 equally spaced density contours between ρ = 0 and ρ = .3 at t = .0036.
(bottom) Density contour of ρ = .16 at t = .0011 at various resolutions to illustrate convergence under grid refinement.

2, TVD-RK-3, and CFL=.5, which is a selection of parameters that allows the code to run to completion412

without our adaptive time step restriction.413

For the shock diffraction problem, Figure 20(left) shows 60 equally spaced density contours between414

ρ = 0 and ρ = 6 at t = 2.3 obtained using ENO-LLF-3, TVD-RK-3, and CFL=.5 with our adaptive time415

step restriction for semi-implicit time integration. This choice of scheme and parameters is unable to run to416

completion without our adaptive time step restriction. Figure 20(right) shows the density contour of ρ = 1.5417

at various grid resolutions to illustrate convergence under grid refinement. Note that the results are similar418

to those in the literature [6, 41, 44]. This example required flux clamping, and we used ∆tg = 1× 10−3 for419

resolution 130× 110 and successively halved ∆tg each time the resolution was doubled.420

For the two dimensional channel with wavy wall problem, Figure 21(top) shows 40 equally spaced density421

contours between ρ = 0 and ρ = .3 at t = .0036 obtained using ENO-LLF-2, TVD-RK-2, and CFL=.5 with422

our adaptive time step restriction for semi-implicit time integration. This choice of scheme and parameters423

is unable to run to completion without our adaptive time step restriction. Figure 21(bottom) shows the424

density contour of ρ = .16 at various resolutions to illustrate convergence under grid refinement. This425

example required flux clamping, and we used ∆tg = 1× 10−6 for scale 200× 50 and successively halved ∆tg426

each time the resolution was doubled.427

For the enclosure problem, Figure 22(top) shows 60 equally spaced density contours between ρ = 0 and428

ρ = 6 at t = .00075 obtained using ENO-LLF-2, TVD-RK-2, and CFL=.5 with our adaptive time step429

restriction. This choice of scheme and parameters is unable to run to completion without our adaptive430

time step restriction. Figure 22(bottom) shows the density contour of ρ = .05 at t = .00075 at various431

resolutions to illustrate convergence under grid refinement. This example required flux clamping, and we432

used ∆tg = 5×10−7 for resolution 100×50 and successively halved ∆tg each time the resolution was doubled.433

8. Two-way solid-fluid coupling434

[33] proposed a symmetric positive definite system for handling monolithic two-way solid-fluid coupling435

for incompressible flow. This method was later extended to compressible flow in [13] by integrating it with436
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Figure 22: The two dimensional enclosure problem [27]. (top) 60 equally spaced density contours from ρ = 0 to ρ = 6 at
t = .00075. (bottom) Density contour of ρ = .05 at t = .00075 at various grid resolutions to illustrate convergence under grid
refinement.
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the semi-implicit compressible flow formulation of [22]. The key idea was to use a Lagrange multiplier λ to437

apply equal and opposite impulses to the solid and fluid. That is, equation (24) is rewritten for all fluid-fluid438

and solid-fluid dual cells as439

~un+1
f = ~u?f − β−1Gp̃+ β−1WTλ, (35)

where β is a diagonal matrix of dual cell masses, −GT = −V∇T is the volume weighted divergence operator440

defined only for fluid cells, and its negative transpose is the volume weighted gradient G. W is a matrix441

of 1’s and 0’s that maps from all non-solid dual cells to all solid-fluid coupled dual cells. Here, solid-fluid442

coupled dual cells are the partially filled cells on the boundary of the solid where the Lagrange multiplier443

constraints are applied. [33] incorrectly sets every term in β to be density times the volume of the entire dual444

cell. To properly address partially filled solid-fluid dual cells, we instead set each term in β to the correct445

fluid mass in these cells, noting that this is obviously problematic if any term in β goes to zero. To conserve446

momentum, an equal and opposite impulse −λ is applied to the solid,447

M~vn+1 = M~v? − JTWTλ, (36)

while448

W (J~vn+1 − ~un+1
f ) = 0 (37)

constrains the velocity of the solid and the fluid to be equal in solid-fluid dual cells. Here J is an interpolation449

matrix from solid degrees of freedom to all non-solid dual cells with non-zero rows only for solid-fluid dual450

cells. Following along the lines of the derivation of equation (29) from equation (24), one may similarly451

derive452

[V P−1 +GTβ−1G]p̃n+1 −GTβ−1WTλ = V P−1p̃? +GT~u?f (38)

from equation (35). Substituting equations (35) and (36), into equation (37) gives453

−Wβ−1Gp̃n+1 + (Wβ−1WT +WJM−1JTWT )λ = WJ~v? −W~u?f (39)

Finally, equations (38) and (39) can be combined into the following symmetric positive definite system,454 (
V P−1 +GTβ−1G −GTβ−1WT

−Wβ−1G Wβ−1WT +WJM−1JTWT

)(
p̃
λ

)
=

(
V P−1p̃? +GT~u?f
WJ~v? −W~u?f

)
(40)

[33] derives455

JTGp̃ = M~v? + JTβ~u?f − (M + JTβJ)~vn+1 (41)

as an equivalent equation in their system and this plays the same role as the second block equation in the456

systems proposed in [34] and [14]. The incorrect choice of β in [33] implies that there is too much fluid457

mass (and thus combined mass) in the solid-fluid region. Unfortunately, using the correct mass drives terms458

in β to 0 ruining equation (35) which is the first equation in the system in [33]. The systems proposed459

in [34] and [14] alleviate this by splitting G into Gf (which acts on fluid-fluid faces) and Gs (which acts on460

solid-fluid coupled faces) so that the vanishing terms in β are associated with Gs and as such do not appear461

(although [14] ignored the mass of the fluid in solid-fluid coupled dual cells completely). Unfortunately,462

unlike system (40) which is positive definite, the systems proposed in [34] and [14] are indefinite.463

Hence, we propose an approach which remedies the issues with vanishing terms in β. First, we make a464

change of variables given by λ̂ = λ+W (β̃ − β)~un+1
f = λ+W (β̃ − β)J~vn+1 (using equation (37)), where β̃465

is a free variable. This allows us to rewrite equation (35) as466

~un+1
f = ~̂u?f − β̂−1Gp̃+ β̂−1WT λ̂ (42)

where β̂ = β +WTW (β̃ − β) and ~̂u?f = β̂−1β~u?f , and equation (36) as467

M̂~vn+1 = M̂~̂v? − JTWT λ̂ (43)
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where M̂ = M − JTWTW (β̃ − β)J = M − JT (β̃ − β)J and ~̂v? = M̂−1M~v?. Here we used the fact that468

WTW is a binary filter that filters out solid-fluid faces from all non-solid faces which is already done by469

JT , hence JTWTW = JT . Equations (42) and (43) have the same exact forms as equations (35) and (36)470

respectively and these two sets of equations are exactly equivalent. Hence we can write a system identical471

to system (40) except with β, ~u?f , M , and ~v? replaced by β̂, ~̂u?f , M̂ , and ~̂v? respectively. Note that solving472

this modified system yields the same exact values for p, ~un+1
f , and ~vn+1 as would be obtained by solving473

system (40). Finally, we define the diagonal terms in β̃ (a free variable defined above) element-wise via474

β̃i = max(βi, βmin) so that the diagonal entries in β̂ are bounded away from 0 and system (40) can be475

solved for a β with vanishing terms via a symmetric positive definite system. Note that the terms in β̂ and476

β̃ corresponding to solid-fluid coupled cells are identical. However, we define β̃ in this fashion so that terms477

corresponding to fluid-fluid dual cells are not clamped if their mass becomes low. Fluid-fluid dual cells with478

low mass are already properly handled using our aforementioned approach to positivity. Also note that the479

effective solid mass M̂ = M − JT (β̃ − β)J closely resembles the lumped mass M + JTβJ from [34], except480

with a negative sign and only non-zero for clamped solid-fluid coupled cells. In fact, clamping β̃i = βmin481

for a given cell i gives a reduction in both the mass and the inertia tensor equivalent to lumping negative482

mass onto the portion of the solid in cell i in order to compensate for the clamping. Finally, note that M̂483

is easily symmetric positive definite as long as βmin is chosen reasonably small and the rigid body does not484

have problematic eigenvalues such as would be the case for a long slender rod. (We handle under-resolved485

bodies in Section 8.1.)486

For positivity preservation, the approach from section 7 can be directly applied to two-way solid-fluid487

coupling since the approach is independent of the actual system being solved for the pressure. Following488

[31] we set the face pressure to be λ/(dtA), where A is the area of a grid face, on solid-fluid coupled faces to489

compute F2(U) instead of using equation (31).490

Remark: Note that λ is a Lagrange multiplier as opposed to a pressure, and hence it can attain negative491

values. Although this is acceptable for the momentum and kinetic energy updates, it can give non-physical492

answers for internal energy in certain cases. To remedy these cases, the energy in cells bordering the solids493

can be updated as follows: The energy update for the projection flux is ∇ · (p~u) = ~u · ∇p + p∇ · ~u, where494

the first term updates the kinetic energy and the second term updates potential energy. Noting this, we can495

store/cache the post advection potential energy before updating the state via F2(U). Then the time tn+1
496

kinetic energy can be computed from the time tn+1 momentum and density. Next, the cached post advection497

internal energy is updated to time tn+1 using the p∇·~u term where p is clamped to be non-negative. Finally,498

the time tn+1 energy is the sum of the potential and kinetic energy.499

Two-dimensional experiment. To test the efficacy of our approach, we simulated the example shown in500

Figure 23 where two blocks with side length .4 collide with each other. The computational domain is501

[−5, 5]× [−5, 5], and initially ρ = 1, u = 0, and p = 1 everywhere. The blocks are placed at (−2, 0.15) and502

(2,−0.15), have initial velocities of (5, 0) and (−5, 0), and masses of 1. All walls have reflective boundary503

conditions, and the blocks collide with the bottom wall as well as with each other with a coefficient of504

restitution of .5. In addition, the blocks are subject to a force field of strength 10 that accelerates them505

in −y direction. Figure 23 shows 35 equally spaced density contours between ρ = 0 and ρ = 3 at various506

times, obtained using ENO-LLF-2, TVD-RK-3, and CFL=.8 with our adaptive time step restriction. This507

choice of scheme and parameters is unable to run to completion without our adaptive time step restriction.508

Figure 24 shows the density contour of ρ = 2.25 at t = .8 at various resolutions to illustrate convergence509

under grid refinement. This example required flux clamping, and we used ∆tg = 2 × 10−3 for resolution510

100 × 100 and successively halved ∆tg each time the resolution was doubled. Note that we have not used511

the strategy mentioned in the remark above for running this example.512

8.1. Sub-grid Solid-Fluid Coupling513

Our main goal is to solve complex solid-fluid coupling problems such as blast waves from explosions514

impacting complex solid objects. Such explosions are typically characterized by small fragments that fly515

out with the blast waves and cause spallation (weakening of the material) upon impact. In this section we516
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Figure 23: Two blocks collide with each other. 35 equally spaced density contours between ρ = 0 and ρ = 3 at t = 0, t = .4,
t = .8, t = 1.2, t = 1.6, and t = 2 (in row major order).
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Figure 24: Two blocks collide with each other: (top) Density contour of ρ = 2.2 at t = .42 (left) and t = .9 (right) at various
resolutions to illustrate convergence under grid refinement. (bottom) Convergence of the position of the blocks under grid
refinement also at t = .42 (left) and t = .9 (right). Note that the blocks at t = .9 do not as readily converge, since the collision
not only introduces a discontinuity but also my cause erroneous sticking (see [32]).
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explain how our approach handles such small (generally under-resolved by the underlying grid) fragments.517

This treatment was motivated by the treatment of small bubbles in [28].518

medial axis
sample points
center of mass

We model the sub-grid solid-fluid coupling by writing the velocity matching519

equation at sample points on solids rather than at dual cell centers (as was520

done in equation (37)). For small solids we use the center of mass as the sample521

point, and for thin rod-like structures we use one sample per cell placed at522

the center of the portion of its medial axis that lies in that cell (see figure523

on the right). Let Js be the interpolation operator from the solid degrees524

of freedom to the sample points. We then define H to be the interpolation525

operator from fluid faces to the same sample points. An equal and opposite526

impulse is applied to each sample point and mapped back to the solid and527

fluid via JTs and HT respectively, i.e.,528

~un+1
f = ~u?f − β−1Gp̃+ β−1HTλs, (44)

529

Ms~v
n+1
s = Ms~v

?
s − JTs λs. (45)

530

Js~v
n+1 −H~un+1

f = 0. (46)

where equation (46) is written only for our chosen sample points in contrast to equation (37). However, if531

one draws an equivalence between H and W as well as between Js and WJ , one can see the similarities with532

the prior approach. Similar to system (40), this gives a symmetric positive definite system. Combining the533

equations for sub-grid rigid bodies with system (40) for well resolved rigid bodies, yields534 V P−1 +GT β̂−1G −GT β̂−1WT −GT β̂−1HT

−Wβ̂−1G Wβ̂−1WT +WJM̂−1JTWT 0

−Hβ̂−1G 0 Hβ̂−1HT + Js(αMs)
−1JT

s

 p̃

λ̂
λs

 =

V P−1p̃? +GT ~̂u?
f

WJ~̂v? −W~̂u?
f

Js~v
?
s −H~̂u?

f

 (47)

after replacing appropriate variables with hats in order to properly handle partially fluid-filled dual cells.535

This formulation works well in practice except that small solids at high velocities may be slowed down too536

much by the large amount of fluid in the surrounding grid cell. Although this would be alleviated to some537

degree by grid refinement, we propose the following modification to equation (46) on coarse grids,538

Js~v
n+1
s − αH~un+1

f − (1− α)Js~v
?
s = 0. (48)

One can show that this is mathematically equivalent to dividing a solid of mass Ms into two pieces with539

masses αMs and (1 − α)Ms, where the first piece two-way couples with the fluid equilibrating its velocity540

and the second piece continues traveling with its time t? velocity; afterwards, the two pieces are combined541

via an inelastic collision. Equation (48) is the source of the α factor in system (47).542

After solving system (47), we update the face velocities using equation (44) and ignore the contribution543

of λs to the pressure when constructing F2(U). Then, we update the fluid to time tn+1, and store/cache544

the time tn+1 potential energy. To account for the effect of λs on the momentum and energy, we compute545

HTλs to find the impulse which is applied to fluid faces and distribute this face impulse from every face546

to the two cells bordering that face in a density-weighted manner. Applying this cell impulse changes the547

momentum, and we use this new momentum to compute the kinetic energy. The total energy in each cell is548

then the sum of this kinetic energy and the cached potential energy. Algorithm 1 can now be modified as549

shown in algorithm 2 to handle solid-fluid coupling and sub-grid bodies.550

Two-dimensional experiments. We show two examples with sub-grid rigid bodies demonstrating that our551

method can be used to maintain positivity even in the presence of these sub-grid bodies. Consider a domain552

of [0, 1]× [0, .5] as shown in Figure 8.1 (right). Initial conditions are p = 104 , ρ = .1, and v = 0 everywhere.553

If x ≤ .3, then u = 100, otherwise u = 0. We place 200 heavy (mass .2) followed by 100 light (mass 2×10−5)554

followed by 200 heavy (mass .2) sub-grid rigid bodies all having side length 5 × 10−4 at the center of the555

domain as shown in Figure 8.1 (left). In the gap between the light bodies we place 2 sub-grid rods of mass556
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Algorithm 2 Final Simulation Loop

1: while time < ttarget do
2: Compute the time step size ∆t.
3: Usave = Un.
4: Update Un with a positivity preserving forward Euler step of size ∆t1 and fluxes F11.
5: Take another positivity preserving forward Euler step of size ∆t2 and fluxes F12.
6: Compute the effective advection flux F1(U) as described in equation (34).
7: Compute ∆tadv = 2∆t1∆t2

∆t1+∆t2
.

8: Solve the system in equation (47) with ∆t = ∆tadv to obtain p, λ̂, and λs.
9: Update fluid face velocities ~uf to time tn+1 using equations (35) and (44).

10: Compute pf as per equation (31), and use pf = λ/(dtA) on solid-fluid faces.
11: Use pf along with the updated face velocities to construct the projection flux F2(U) = (0, pf , pf~uf )T .
12: Compute the effective flux Feff = F1(U) + F2(U).
13: Use adaptive time step restriction on U = Usave with fluxes Feff to obtain ∆tfinal.
14: if ∆tfinal < ∆tg then
15: ∆tfinal = ∆tg
16: Perform flux clamping on Feff to obtain F̂eff

17: end if
18: Update Usave to Un+1 with time step ∆tfinal and fluxes F̂eff similar to equation (33)
19: Store/cache the potential energy Ep.
20: Compute face impulse If = HTλs.

21: For every face i+1/2 distribute Ifi+1/2 to two neighboring cells, Ii +=
ρiI

f
i+1/2

ρi+ρi+1
and Ii+1 +=

ρi+1I
f
i+1/2

ρi+ρi+1
.

22: Apply the cell impulse I to the momentum in each cell, use the updated momentum to compute the
kinetic energy Ek.

23: Compute the total energy in cell as Ep + Ek.
24: Use the old ρ along with the updated momentum and energy to construct the final time tn+1 state.
25: Compute the final solid velocities ~vn+1 as per equations (36) and (45).
26: Advance the rigid bodies with contacts and collisions as per [15].
27: time +=∆tfinal.
28: end while

Figure 25: (left) Initial setup. (right) Density contours between ρ = 0 and ρ = .4 for 400 heavy (blue) and 100 light (red)
“small” sub-grid bodies, and 2 “rod-like” sub-grid bodies (magenta) hit by a high velocity fluid in two spatial dimensions on a
200× 100 grid at time t = .008.
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Figure 26: Time evolution from t = 0 to t = 0.14 of three sub-grid rigid bodies with different values of α hit by a high velocity
fluid in two spatial dimensions on a 100× 25 grid.

5× 10−4 and dimensions (5× 10−4)× .035. The boundary conditions are reflective everywhere. Figure 8.1557

(right) shows the density color map at t = .0008 obtained using ENO-LLF-2, TVD-RK-3, and CFL=.5 with558

our adaptive time step restriction. This choice of scheme and parameters is unable to run to completion559

without our adaptive time step restriction. This example required flux clamping, and we used ∆tg = 1×10−6
560

for scale 200 × 100. Next, consider a domain of [0, 2] × [0, .5] as shown in Figure 8.1. Initial conditions are561

p = 102 , ρ = .1, and v = 0 everywhere. If x ≤ .3, then u = 5, otherwise u = 0. We place three sub-grid562

rigid bodies all with side length 5 × 10−3 and mass 2 × 10−4 at x = .3 and y = .38, y = .42, and y = .46563

respectively. The bodies have α = .001, α = .015, and α = 1. respectively. Figure 8.1 shows the time564

evolution from t = 0 to t = 0.14 of these bodies on a 100× 25 grid to demonstrate the effect of varying α.565

9. Conclusion566

We designed a novel method which adaptively clamps the size of the time step in order to guarantee567

positive density and internal energy. To prevent the time step size from becoming arbitrarily small, we also568

deigned a local conservative flux clamping scheme. We demonstrated the usefulness of our method on several569

one-dimensional and two-dimensional problems. Since our method takes the form of a time step restriction,570

it is applicable to any spatial scheme using a method of lines approach. It can also be used with any equation571

of state.572
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Appendix I674

Consider equation (16). Rewriting L1 and L2 in terms of a continuous function L gives675

φn+1 = φn +
2∆t1∆t2

∆t1 + ∆t2

(
∆t1L(t, φn) + ∆t2L(t+ ∆t1, φ

n + ∆t1L(t, φn))

∆t1 + ∆t2

)
.

Taylor expanding L(t+ ∆t1, φ
n + ∆t1L(t, φn)) around L(t, φn) as,676

L(t+ ∆t1, φ
n + ∆t1L(t, φn)) = L(t, φn) + ∆t1

∂L

∂t
+ ∆t1L(t, φn)

∂L

∂φ
+O(∆t21)

and substituting the result in the expression for φn+1 gives677

φn+1 = φn +
2∆t1∆t2

∆t1 + ∆t2
L(t, φn) +

1

2

(
2∆t1∆t2

∆t1 + ∆t2

)2(
∂L

∂t
+ L(t, φn)

∂L

∂φ

)
+

1

2∆t1

(
2∆t1∆t2

∆t1 + ∆t2

)2

O(∆t21).

Substituting ∆t = 2∆t1∆t2
∆t1+∆t2

and using the fact that ∆t ≤ ∆t1 gives678

φn+1 = φn + ∆tL(t, φn) +
1

2
∆t2

(
∂L

∂t
+ L(t, φn)

∂L

∂φ

)
+O(∆t3)

which is precisely the Taylor expansion for φn+1 accurate to second order.679

40



Appendix II680

In [37] the authors write all possible RK-3 updates parametrized as follows681

u(0) = un (49)

u(1) = u(0) + ∆tβ10L(u(0)) (50)

u(2) = u(0) + ∆t((β20 + α21β10)L(u(0)) + β21L(u(1))) (51)

u(3) = u(0) + ∆t((β30 + α31β10 + α32(β20 + α21β10))L(u(0)) + (β31 + α32β21)L(u(1)) + β32L(u(2)))(52)

Without loss of generality we can define P = β20 +α21β10 +β21 as in [37]. One can also derive the following682

condition by eliminating β32 from the first two equations in equation 2.17 of [37]683

P = β10 + 2β10
β21

P
− 3β2

10

β21

P
. (53)

In Section 4, we also make use of the auxiliary variables u2, u3, ∆t1, ∆t2, and ∆t3 via684

u(1) = u(0) + ∆t1L(u(0)) (54)

u2 = u(1) + ∆t2L(u(1)) = u(1) + k∆t1L(u(1)) (55)

u3 = u(2) + ∆t3L(u(2)) (56)

where ∆t1 = ∆tβ10 from equation (50), and k = ∆t2/∆t1 ≥ 0 is determined after ∆t1 and ∆t2 are chosen685

using our adaptive time step restriction described in Section 3. Note that our adaptive time step restriction686

guarantees the positivity of u(1), u2, and u3. Given this information, our goal is to obtain positive values for687

u(2) and u(3).688

Equation (51) can be rewritten as,689

u(2) = u(0) + ∆t((P − β21)L(u(0)) + β21L(u(1))) (57)

Using equations (54) and (55) to eliminate L(u(0)) and L(u(1)) we can rewrite this as690

u(2) =

(
1− ∆t(P − β21)

∆t1

)
u(0) +

(
∆t(P − β21)

∆t1
− ∆tβ21

∆t2

)
u(1) +

∆tβ21

∆t2
u2 (58)

Positivity of the coefficient3 of u2 implies β21 ≥ 0, while positivity of the coefficient of u(1) implies (P −691

β21)∆t2 ≥ β21∆t1 or (P−β21)∆t2 = nβ21∆t1, for some n ≥ 1. Thus β21 = P∆t2/(n∆t1+∆t2) = Pk/(n+k)692

allowing us to rewrite equation (57) as693

u(2) = u(0) + ∆tP

(
n∆t1L(u(0)) + ∆t2L(u(1))

n∆t1 + ∆t2

)
(59)

Since the update for u(2) in RK-3 is similar to that for u(2) in RK-2, comparing equation (59) with equations694

(15), (16), and (17) motivates the reparametrization of P∆t as695

P∆t =
m∆t1∆t2
n∆t1 + ∆t2

=
m∆t1k

n+ k
(60)

in terms of a new parameter m. Substituting β10 and β21 into equation (53) results in696

P =
(n∆t+ 3k∆t− 3k∆t1)∆t1

∆t2(n+ k)
(61)

3This is a sufficient but not a necessary condition for positivity preservation. However, if the coefficients are not all positive,
then they would have to depend on the state, which is not very general.
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Equations (60) and (61) together allow us to find P and ∆t as697

P =
(3k + n− km)m

3(n+ k)
(62)

∆t =
3k∆t1

3k + n− km
(63)

Finally, positivity of the coefficient of u(0) implies ∆t(P − β21) ≤ ∆t1 or ∆tPn/(n + k) ≤ ∆t1. Thus from698

equation (60), mkn ≤ (n+ k)2 which can be rewritten as n2 + (2−m)kn + k2 ≥ 0. When m = 4, one can699

complete the square guaranteeing the satisfaction of the above condition for all n and k. Thus, choosing700

m ≤ 4 guarantees the positivity of the coefficient of u(0).701

Next, we proceed applying similar rules to u(3). Letting k1 = ∆t(P − β21), k2 = ∆tβ21, k3 = ∆t(β30 +702

α31β10 + α32(β20 + α21β10)), k4 = ∆t(β31 + α32β21), and k5 = ∆tβ32 gives703

u(3) = u(0) + k3L(u(0)) + k4L(u(1)) + k5L(u(2)) (64)

= u(0) + k3
(u(1) − u(0))

∆t1
+ k4

(u2 − u(1))

∆t2
+ k5

(u3 − u(2))

∆t3
(65)

= (1− k3

∆t1
− k5

∆t3
+

k5k1

∆t3∆t1
)u(0) + (

k3

∆t1
− k4

∆t2
− k5k1

∆t3∆t1
+

k5k2

∆t3∆t2
)u(1) (66)

+(
k4

∆t2
− k2k5

∆t2∆t3
)u2 +

k5

∆t3
u3 (67)

In the last step we used equation (58) to eliminate u(2). Again, we want positive coefficients for u(0), u(1),704

u2, and u3. This leads to the following inequalities,705

∆t3(∆t1 − k3) ≥ k5(∆t1 − k1) (68)

∆t3(k3∆t2 − k4∆t1) ≥ k5(k1∆t2 − k2∆t1) (69)

∆t3k4 ≥ k2k5 (70)

k5 ≥ 0 (71)

Again, consider equation 2.17 of [37]. The second equation of equation 2.17 can be used to find β32 =706

1/(6β10β21), and hence k5. The fourth equation of equation 2.17 gives k3 + k4 + k5 = ∆t, while the third707

equation of equation 2.17 can be simplified to (1/2 − Pβ32)/β10 = β31 + α32β21 which equals k4/∆t. At708

this point one can write k1, k2, k3, k4, and k5 in terms of ∆t1, ∆t2, m and n which then allows us to709

express inequalities (68) to (71) in terms of ∆t1, ∆t2, ∆t3, m and n. Then, inequalities (68) and (69) can710

be combined into the form711

f(k, n) ≤ m ≤ 2 (72)

where we plot f as a function of k for various n in Figure 27. As can be seen in the figure, the left712

hand side of inequality (72) is satisfied for all k and n when m ≥ 1.5 but may be relaxed to smaller vales of713

m as k becomes larger and n → 1. While n is one of our parameters, the value of k = ∆t2/∆t1 can only714

be decreased since ∆t2 was already chosen to be an upper bound for positivity preservation. For m ≤ 2,715

inequality (70) can be simplified to716

∆t3 ≥ ∆t1
2−m

(73)

which is a problematic condition that restricts the size of the third time step with a lower bound. Moreover,717

this condition suggests that m can be made as small as possible which contradicts with the left hand side of718

inequality (72). Note that one can always satisfy inequality (73) by clamping fluxes as discussed in Section719

5, but this results in a loss of accuracy ameliorating some of the benefits of RK-3 over RK-2 to begin with.720

Even so, this clamped version of RK-3 may still have a better stability region.721
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n = 1

n = 2

n = 3

n = 20

Figure 27: Plot of f(k) for various values of n

In summary, ∆t1 is chosen based on the CFL condition and further clamped based on positivity. ∆t2 is722

chosen similarly determining the value of k. k can be made smaller if desired by reducing the value of ∆t2.723

Then n = 1 gives the best lower bound for m via inequality (72) and Figure 27. We choose m = 1.5 so the724

inequality (72) does not further restrict k. Finally we choose ∆t3 = ∆t1/(2 − m) = 2∆t1 as a minimum725

allowable value according to inequality (73). Once all the parameters are chosen, equations (58) and (66)726

determine u(3). Table 4 shows the error and order of convergence of this scheme for y′ = −y where k is chosen727

randomly in the range [0, 1] for each time step. Figure 28 shows the plot of the coefficients of u(0), u(1),728

u2, and u3 from equation (66) as a function of time for the case ∆t1 = 0.01. Note that the coefficients are729

always positive. Not exhaustively, but we have plotted coefficients for other choices of m and ∆t3 and seen730

that the coefficients become negative when either of the conditions in inequalities (72) or (73) is violated.731

Figure 28: Plot of coefficients of u(0), u(1), u2, and u3 in equation (66) for m = 1.5 and ∆t3 = ∆t1
2−m

as a function of time when

k is chosen randomly for each time step.
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∆t1 error convergence
×10−2 order
1 1.01679e-08 -
.5 1.28509e-09 2.98408
.25 1.60989e-10 2.99684
.125 1.99881e-11 3.00975
.0625 2.52537e-12 2.98457
.03725 3.12889e-13 3.01277
.018625 3.94407e-14 2.98789

Table 4: Errors and order of accuracy for y′ = −y with the proposed TVD RK-3 scheme.
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