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Abstract

We take a particle based approach to incompressible free surface flow motivated by the fact that an explicit
representation of the interface geometry and internal deformations gives precise feedback to an implicit solver
for surface tension. Methods that enforce incompressibility directly on the particles are typically numerically
inefficient compared to those that utilize a background grid. However, background grid discretizations suffer
from inaccuracy near the free surface where they do not properly capture the interface geometry. Therefore,
our incompressibility discretization utilizes a particle based projection near the interface and a background
MAC grid based projection for efficiency in the vast interior of the liquid domain – as well as a novel method
for coupling these two disparate projections together. We show that the overall coupled elliptic solver is
second order accurate, and remains second order accurate when used in conjunction with an appropriate
temporal discretization for parabolic problems. A similar second order accurate discretization is derived when
the MAC grid unknowns are located on faces (as opposed to cell centers) so that Navier-Stokes viscosity can
be solved for implicitly as well. Finally, we present a fully implicit approach to surface tension that is robust
enough to achieve a steady state solution in a single time step. Beyond stable implicit surface tension for
our novel hybrid discretization, we demonstrate preliminary results for both standard front tracking and the
particle level set method.

1. Introduction

Incompressible free surface flows are of great interest due to their wide scope of applications ranging from
small scale droplet dynamics to large scale dam breaking. Simulation of incompressible free surface flows is a
challenging problem because the location of the free surface and hence the shape of the fluid domain is time
dependent. Surface tension forces exacerbate the situation by imposing a strict ∆t = O(∆x3/2) time step
restriction. A number of approaches have been proposed to alleviate this restriction. [24] derived an implicit
formulation of surface tension by looking at the changes of curvature over time. This was simplified in [26] via
the use of the Laplace-Beltrami operator. This simplified approach was also implemented for finite volume
models in [41]. The approaches of [49, 61, 64] split the Laplace-Beltrami operator into a standard Laplacian
term and an extra term allowing for a semi-implicit approach treating the standard Laplacian implicitly.
There are also approaches that improve stability of VOF-based surface tension schemes [54, 35, 51]. A main
difficulty faced by these approaches is the lack of an explicit representation of the interface when deriving an
implicit model for surface tension. [43] discretized the surface tension force on a Lagrangian mesh attempting
to avoid this difficulty. They coupled the Lagrangian surface tension force with the pressure on the Eulerian
grid using an interpolation matrix. This significantly improved the stability, but due to the indirection of
the interpolation matrix the surface tension force does not achieve an exact balance with the incompressible
pressure and thus still suffers from instability with larger time steps.
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(a) fully Lagrangian (b) with a background grid (c) hybrid particle MAC grid

Figure 1: Subfigure (a) shows a simulation result using a fully Lagrangian approach where all particles are connected into a
Lagrangian mesh to enforce incompressibility. Subfigure (b) shows the result of the same test but using a background grid to
enforce incompressibility. This approach runs about 27 times faster than that in Subfigure (a), but it loses significant detail
near the fluid surface. Subfigure (c) shows the result using our hybrid approach where particles near the fluid surface are
connected into a Lagrangian mesh while a background grid is used for the majority of the interior fluid region. We use the
same exact particles as in Subfigure (a) and the same exact background grid as in Subfigure (b). Incompressibility is enforced
on this hybrid structure as described in Section 4. This hybrid approach runs about 9 times faster than that in Subfigure (a),
and it also preserves all the sub-grid details near the fluid surface unlike Subfigure (b).

Motivated by [43], a Lagrangian description of the interface is desirable when deriving an implicit model
for surface tension because interface positions, curvature and force derivatives are readily accessible. This
motivates the use of a front tracking method [59, 56]. But front tracking alone does not completely alleviate
the issues because one still has to balance surface tension with internal pressure forces, and this coupling is
still difficult to address when the pressure forces are described on an Eulerian grid. An alternative solution
is to take a fully Lagrangian approach to the problem and solve the incompressibility condition directly on
particles. These particle-based methods have gained much attention for incompressible flow problems, see
e.g. [14, 13, 25, 34, 62]. However, [55] pointed out that these solvers are expensive due to the inefficiency of
solving the Poisson equation on an irregular particle mesh. They also pointed out that mapping particles to
a background grid and solving for incompressibility on that grid is more efficient as in [23, 10, 36]. However,
the results can be quite inaccurate in the case of free surface flows where a detailed sub-grid description of the
interface is lacking. We address these issues by treating the large interior of the fluid region with a standard
Eulerian method while (only) meshing up a thickened region near the free surface, so that both efficiency
and accuracy are addressed (see Figure 1). Moreover, with the free surface and a thickened region of the
fluid near the free surface represented by a Lagrangian mesh, an exact balance between the surface tension
force and the pressure force can be achieved resulting in better stability. We derive a second order accurate
symmetric positive definite discretization of the Poisson equation on this hybrid particle grid structure in
both two and three spatial dimensions. We then extend this Poisson equation solver to the heat equation on
the cell centers, and furthermore modify the discretization to solve for the viscous forces on the MAC grid
faces. Although this hybrid solver is motivated by the need for surface tension stability, it is also beneficial
for simulating incompressible free surface flows without surface tension.

A common issue with particle-based solvers for incompressible flows is drifting of particles due to numer-
ical errors, and as discussed in [19] this drifting causes variations in the particle density which subsequently
cause robustness issues. In order to control particle density, various authors proposed applying a second
elliptic projection [40, 36, 25]. Unlike these approaches, we calculate the particle masses from their control
volumes and a constant density. In this way, the particle density is independent of the fluid density avoiding
robustness issues. Although we do not require a second projection, we point out that one could combine the
projection for enforcing incompressibility and the projection for enforcing a constant particle density into a
single projection using the technique proposed in [38].

Section 7 addresses surface tension. For illustrative purposes, we start with a fully Lagrangian repre-
sentation and we conduct the exploration using a step-by-step constructive approach. We stress that fully
coupling the surface tension force to the pressure force seems to be a key for stability. In addition, imposing
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Figure 2: The hybrid mesh/grid structure. Surface cells are shaded yellow, buffer cells are shaded green, and interior cells are
shaded pink. The red dots represent surface particles, the black dots represent regular particles, and the green dots represent
the grid nodes of buffer cells. The dashed line is .5∆x away from the green cells. Regular particles below the dashed line are
ignored by the meshing algorithm. Regular particles above the dashed line together with surface particles and the nodes of
buffer cells are connected into a triangle mesh.

a constant volume condition instead of the divergence free condition seems to greatly improve accuracy espe-
cially for large time steps as in the steady state case. The final scheme is a fully implicit volume conserving
scheme that can achieve a steady state solution with very large time steps. This scheme is extended to
our hybrid particle grid structure for the sake of efficiency. Finally, we show that the same ideas can be
applied to the standard front tracking method and to the particle level set method. Note that our implicit
approach requires formulating a tightly coupled system between the implicit surface tension force and the
incompressible pressure force, and we utilize the technique proposed in [42] so that this coupled system can
be made symmetric positive definite and subsequently be solved efficiently.

2. Mesh Generation

The entire computational domain is defined using a Marker-And-Cell (MAC) grid, and the part of the
domain occupied by fluid is identified by the presence of marker particles. Particles are only needed in the
thickened outer band and potentially a small buffer region, however for the sake of simplicity we utilize
particles throughout the entire region occupied by fluid. We have two types of particles, surface particles
and regular particles. Given an expression for the initial position and shape of the fluid, surface particles
are placed exactly on the fluid surface and regular particles are randomly placed inside the fluid domain in
such a way that there are roughly four particles per cell in two spatial dimensions and eight particles per
cell in three spatial dimensions. Throughout the simulation, we maintain this roughly uniform distribution
property by particle reseeding.

Each time step, grid cells containing particles are marked as fluid cells, while the others are marked as
exterior cells. The fluid cells are further categorized into three types: surface cells, interior cells and buffer
cells. Surface cells are fluid cells near the interface where we construct a triangle (or tetrahedral) mesh
connecting particles, interior cells are deeper away from the interface and are discretized using a standard
MAC grid, and buffer cells serve as a blending region that stitches the triangle mesh and the MAC grid
together. Generally speaking, we use at least two layers of surface cells and one layer of buffer cells. Regular
particles that are inside either buffer or interior cells are ignored by the meshing algorithm. We also ignore
any regular particle whose center is within .5∆x of the boundary of buffer cells. The other regular particles
together with surface particles and the grid nodes of buffer cells are used in the meshing algorithm to generate
a triangle mesh (Figure 2).
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(a) Particle input (b) Step 1 (c) Step 2

Figure 3: The framework of our meshing algorithm. Red dots are surface particles, black dots are regular particles that need
to be connected, and green dots are the grid nodes of buffer cells. Regular particles ignored by our meshing algorithm are not
shown in the figure. Step 1 constructs a surface mesh from surface particles to represent the fluid surface. Step 2 fills the gap
between the surface mesh and interior cells with a volumetric mesh.

Our meshing algorithm contains two steps (Figure 3). First, a surface mesh consisting of line segments
(or triangles in three spatial dimensions) is constructed from surface particles to represent the fluid surface.
Second, all the surface particles, appropriate regular particles, and the grid nodes of buffer cells are connected
together to form an interior volumetric mesh. For the first step, the restricted Delaunay method [16] is used to
construct the surface mesh. This method first constructs an auxiliary volumetric mesh from surface particles
using a standard Delaunay method. For the sake of efficiency, we place one layer of auxiliary particles at
the centers of buffer cells to localize this meshing process (see Figure 4(a) and 4(b)). The distance from
auxiliary particles to surface particles must be large enough so that the topology of the surface mesh will not
be affected. Since the distance from the centers of buffer cells to the surface particles is at least three times
the average particle spacing, we found that adding auxiliary particles at the centers of buffer cells is sufficient
in practice. Next, we delete all triangles whose circumcenters are outside the fluid domain (Figure 4(c)), and
extract the surface mesh from the remaining triangles (Figure 4(d)). Extracting the surface mesh from a
volumetric mesh guarantees that the surface mesh is a manifold. Moreover, it is provable that the restricted
Delaunay method gives a good approximation of the fluid domain in both two and three spatial dimensions
in the sense that it correctly captures the topology of the fluid domain given a sufficiently dense sampling
[4]. The restricted Delaunay method requires a representation of the fluid domain to determine whether a
circumcenter is inside it. For the initial data, we already have such a representation as input. For later
time steps, we proceed as follows. If the location of a circumcenter is inside a cell that is at least one layer
away from the cells containing surface particles, one can simply test whether the location is inside a fluid
cell. Otherwise, a more accurate representation of the fluid domain is needed. For this purpose, we advect
the volumetric mesh constructed at the previous time step to the current time step, and test whether the
location of a circumcenter is inside any triangle of the advected mesh. Note that the advected mesh may
have some inverted triangles, and these are ignored during the inside/outside test because they are invalid for
the purpose of representing the current fluid domain. The advected mesh is only used for the inside/outside
test and is discarded afterwards.

The second step of our meshing algorithm generates a volumetric mesh filling the gap between the
surface mesh and interior cells. This volumetric mesh should conform to the surface mesh generated at the
first step. We also require it to conform to the grid faces of buffer cells to facilitate discretization. These
requirements motivate the use of the constrained Delaunay method [47]. However, the constrained Delaunay
mesh may not exist in some cases in three spatial dimensions. Therefore, we construct the mesh as Delaunay
as possible while guaranteeing a valid mesh structure. Maintaining a valid mesh structure during meshing
can be expensive, because this requires doing intersection tests and other validity checks when generating
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(a) Placing auxiliary particles (b) Constructing an auxiliary
volumetric mesh

(c) Deleting “outside” trian-
gles

(d) Extracting the surface
mesh

Figure 4: Step 1 of our meshing algorithm. The input to this step are surface particles (red dots). We place one layer of
auxiliary particles (yellow dots) to localize the meshing process (a). An auxiliary volumetric mesh is constructed first (b). The
“outside” triangles whose circumcenters are outside the fluid domain are deleted (c). The surface mesh is then extracted from
the remaining triangles (d).

each element. To improve the efficiency, we split this into two passes. The first pass does the meshing
process without checking the validity of the mesh structure. To ensure the mesh structure is valid during the
first pass, we identify particles that may endanger the conformation requirement (Figure 5(a), we call these
particles problematic particles) and ignore them during the first pass. The other particles are connected into
a volumetric mesh using the standard Delaunay method (Figure 5(b)). All triangles whose circumcenters
are outside the fluid domain are deleted (Figure 5(c)). Note that some triangles may intersect interior cells,
and we delete these as well. After we obtain a volumetric mesh from the first pass, we then do a second pass
inserting the problematic particles back into the mesh (Figure 5(d)). We use the Bowyer-Watson algorithm
[9, 60] to insert problematic particles, but during insertion we check the validity of the mesh structure and
sacrifice the Delaunay property when necessary to maintain a valid mesh. Since we already have a valid mesh
to start with, maintaining a valid mesh is relatively straightforward. And since the number of problematic
particles is small, the cost of maintaining a valid mesh is minimized.

To decide which particles should be treated as problematic, we utilize a property of the Delaunay tri-
angulation that states that a segment is generated in a Delaunay mesh if and only if at least one of its
circumcircles contains no other particles. Therefore, to ensure that all segments in the surface mesh will be
included in the volumetric mesh generated in the first pass, it is sufficient to identify problematic particles
as regular particles that are within the minimum circumcircles of the segments in the surface mesh. In three
spatial dimensions, similar properties hold and problematic particles are identified as regular particles inside
the minimum circumspheres of both the segments and the triangles in the surface mesh. Note that for grid
faces of buffer cells, the particles within their minimum circumcircles are already ignored by the meshing
algorithm. Thus, in two spatial dimensions, there will be a segment connecting the two grid nodes for each
grid face of buffer cells, i.e. the mesh will be conforming. Similarly in three spatial dimensions, there will be
two triangles connecting the four grid nodes for each grid face of buffer cells.

Note that both steps of our meshing algorithm use a standard Delaunay method as a building block. An
advancing front Delaunay meshing algorithm similar to [21] is employed as our standard Delaunay method.
It starts by picking an initial triangle whose circumcircle contains no other particles. The edges of the initial
triangle are added to the front which is a queue of segments waiting to be processed. Behind the front are
particles already connected, and ahead of the front are particles waiting for connection. It then marches
outwards by dequeuing one segment at a time from the front and searching for the particle that forms the
minimum circumcircle with the dequeued segment. A new triangle is then generated from the dequeued
segment and the chosen particle, and the front is updated accordingly. If the front is empty, it tries to find
another initial triangle. If no such triangle is found, the algorithm ends. This algorithm is especially suitable
for uniformly distributed particles, because we can simply localize the search region to a local neighborhood
when choosing particles. This leads to constant time cost for each iteration and a linear time complexity
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(a) Identifying “problematic”
particles

(b) First pass: constructing a
volumetric mesh

(c) First pass: deleting “out-
side” triangles

(d) Second pass: inserting
“problematic” particles

Figure 5: Step 2 of our meshing algorithm. The input to this step are surface particles (red dots), regular particles that need to
be connected (black dots), grid nodes of buffer cells (green dots), and the surface mesh generated from Step 1. Regular particles
that are inside the circumcircles of the segments in the surface mesh (cyan dots) are identified as “problematic” particles (a).
The first pass of meshing constructs a volumetric mesh (b) and deletes all “outside” triangles whose circumcenters are outside
the fluid domain (c). The second pass of meshing adds the “problematic” particles back into the mesh (d).

overall. Degenerate cases occur when more than three particles are cocircular which causes robustness issues.
In order to eliminate degenerate cases, we use the symbolic perturbation method proposed by [15] together
with the adaptive exact arithmetic predicates proposed by [46].

After meshing, we reseed particles to maintain a roughly uniform distribution. If a mesh segment is longer
than 1.5 times the average particle spacing, a new particle is inserted in the middle of the segment with its
velocity averaged from the two particles at the ends of the segment. We also randomly insert particles into
fluid cells that are at least one layer away from the exterior cells and contain less than four particles (eight
particles in three spatial dimensions). If the randomly inserted particles are inside the triangle mesh, their
velocities are interpolated from the mesh using barycentric interpolation. Otherwise, their velocities are
interpolated from the MAC grid faces using bilinear/trilinear interpolation. Although we add particles after
meshing, particle deletion occurs before remeshing and directly after particle advection. This is accomplished
by merging two particles if their distance is less than one third of the average particle spacing by placing a
new particle equal distance between them. The velocity of the new particle is averaged from the two original
particles. In order to maintain a good sampling of the surface, when a surface particle is within merging
distance of a regular particle, we simply delete the regular particle and perform no merging operation.
Particles that escape from the fluid domain due to topology changes are deleted.

To address cases near the boundary of the Cartesian computational domain, the mesh is generated
against the boundary of the computational domain so that MAC grid cells do not touch the boundary.
Further optimization would allow MAC grid cells to touch the boundary of the computational domain, but
this would require more careful consideration in light of contact angles – which we leave to future work.

3. Advection

Consider the advection of an arbitrary scalar field ψ driven by a given velocity field u. The ψ values are
defined at the centers of the interior cells and on the particles of the Lagrangian mesh as well as the grid
nodes of buffer cells. Particles that are not connected to the Lagrangian mesh do not have their ψ values
readily defined, and these values can be interpolated either from the Lagrangian mesh using barycentric
interpolation or from grid cells using bilinear/trilinear interpolation. For the purpose of the advection tests
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Ωn Ωn+1

(a) Advection of ψ

Ωn Ωn+1

(b) Self-advection of velocities

Figure 6: The range of cells that require valid data for the semi-Lagrangian advection. The values are advected from the red
solid circle to the blue solid circle. For advection of the ψ values (a), the range of cells that have valid data (the red dashed
circle) must include enough cells to ensure valid interpolation stencils at all backward traced locations. For self-advection of
velocities (b), the red dashed circle must also include the blue solid circle so that the time tn characteristic velocities are defined
throughout Ωn+1.

in this section, we simply initialize all particles with analytic ψ values. Before advection, extra layers of
MAC grid cells surrounding the time tn interior cells are filled with ψ values so that all relevant cells have
valid data for advection. The advection of ψ can then be done separately on particles and on the MAC grid.
Particles are advected forward using either the forward Euler method (FE) or the second order accurate
Runge-Kutta method (RK2) carrying ψ values along with them, and then the hybrid mesh/grid structure
is rebuilt. The ψ values of the time tn+1 interior cells are updated using either the semi-Lagrangian method
(SL) or the semi-Lagrangian style MacCormack method (SL-MacCormack) [44], and the ψ values of the time
tn+1 grid nodes of buffer cells are obtained from the MAC grid by averaging from neighboring cells after
advection.

3.1. Semi-Lagrangian Advection

On the MAC grid we define the region that contains the time tn interior cells as Ωn and the region that
contains the time tn+1 interior cells as Ωn+1. Consider the semi-Lagrangian method which advects ψ from
Ωn to Ωn+1 by tracing backwards from the cell centers in Ωn+1. One needs to have valid ψ values defined
in a band of ghost cells surrounding Ωn before each time step of advection in order to deal with the fact
that some of the semi-Lagrangian characteristic rays may land outside of Ωn because of inaccuracy as well
as inconsistency in the meshing that determines Ωn and Ωn+1. Moreover, one needs additional ghost cells so
that there is a valid interpolation stencil for every location where semi-Lagrangian interpolation is required,
see Figure 6(a). In the case of incompressible flow, velocities are self-advected and thus must be defined in
Ωn+1 to enable the backward tracing. This requires a potentially larger range of ghost cells in order to cover
Ωn+1 (see Figure 6(b)). Although self-advection is not important for the advection tests in this section, it
will be important for incompressible flow which we consider later.

Ghost cells are filled by interpolating their ψ values from the Lagrangian mesh using barycentric inter-
polation. Note that as mentioned above mesh elements (triangles/tetrahedra) connecting the grid nodes
of buffer cells obtain their ψ values from the MAC grid after each time step of advection. Using these for
interpolation creates a cyclic dependency which seems to degrade the order of accuracy of the scheme, see
Section 3.4. Therefore, the interior regions Ωn and Ωn+1 include all grid cells interior to the fluid domain
whose cell centers cannot be interpolated from the subset of the Lagrangian mesh that includes no grid nodes
of buffer cells. Ghost cells that are exterior to the fluid region must be filled by extrapolation, which could
be avoided if the Lagrangian mesh is thick enough to ensure that no ghost cells exterior to the Lagrangian
mesh are required.
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(a) t=0 (b) t=.5 (c) t=1

Figure 7: The shape of the fluid region and the distribution of the scalar field at various times in the single vortex flow test.
The warmer colors indicate larger values of the scalar field.

Table 1: The order of accuracy of the single vortex flow test using FE+SL with a thickened mesh.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 9.53 × 10−2 – 1.96 × 10−1 –
512 2.34 × 10−2 – 7.72 × 10−2 – 7.17 × 10−2 0.41 1.55 × 10−1 0.34
1024 1.62 × 10−2 0.53 4.36 × 10−2 0.82 4.28 × 10−2 0.74 9.87 × 10−2 0.65
2048 9.29 × 10−3 0.80 2.45 × 10−2 0.83 2.39 × 10−2 0.84 5.62 × 10−2 0.81

We have implemented the time-varying single vortex flow test from [20]. The domain size is [0, 1]× [0, 1],
and the initial shape is a disk centered at (.5, .75) with a radius of .15. A Gaussian scalar field ψ =
exp(−(x − xc)

2)/2r2 is initialized inside the disk. The velocity field is defined by the stream function
Φ = sin2(πx) sin2(πy)/π, which is multiplied by cos(πt) in order to achieve maximum stretching at t = .5
and return to the initial state at t = 1 (Figure 7). Particles are advected using the forward Euler method,
while the semi-Lagrangian method is used on the MAC grid. The orders of convergence are computed at
both t = .5 and t = 1. For t = .5 the differences between pairs of consecutive resolutions are computed by
comparing ψ defined at the low resolution with that interpolated at the same location from the high resolution
hybrid mesh/grid structure. The order of convergence is then computed between each two consecutive pairs
of resolutions. At t = 1, the scalar field ψ should return to its initial state, and thus the results at various
resolutions are compared to analytic solution. Table 1 shows the results using a thick enough Lagrangian
mesh to preclude the need for extrapolation.

3.2. Semi-Lagrangian-MacCormack Advection

Next consider the SL-MacCormack scheme which consists of a forward advection step followed by a
backward advection step. The forward advection step uses the semi-Lagrangian method to advect ψ from
Ωn to Ωn+1. The backward advection step then does another semi-Lagrangian advection that advects ψ
from a region Ωn+1

b to Ωn+1 by tracing backward along the negated velocity field, see Figure 8(a). The
backward advected ψ values in Ωn+1 are then compared with the original ψ values at time tn to compute
the errors and correct the results of the first semi-Lagrangian forward advection step to be second order
accurate. The requirement for ghost cells solely imposed by the forward advection step is identical to that
of the semi-Lagrangian method. However, the backward advection step imposes an additional requirement
that the ψ values at time tn+1 must be defined inside Ωn+1

b as well as inside a band around Ωn+1
b to ensure

a valid interpolation stencil for every backward traced location. We define this region as Ω̂n+1
b (the green

dashed circle in Figure 8(a)). Note that in the case of self-advection for incompressible flow, the velocities
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Ωn Ωn+1 Ωn+1
b

Ω̂n+1
b

(a) Backward advection

Ωn Ωn+1
Ωn+1

b

Ω̂n+1
b

(b) Single filling

Ωn
Ωn+1 Ωn+1

b

Ω̂n+1
b

(c) Double filling

Figure 8: The range of cells that require valid data for the SL-MacCormack advection. The forward advection step advects
values from the red solid circle to the blue solid circle, while the backward advection step advects values from the green solid
circle to the blue solid circle. For the backward advection step (a), the valid data must be defined in the green dashed circle.
This data can be updated using the single filling scheme (b), which requires that the red dashed circle must have valid data
defined at time tn, and it must include the green dashed circle (when considering self-advection). Alternatively, when using
the double filling scheme (c), the valid data must be defined at time tn+1 inside the blue dashed circle, and it must include the
green dashed circle.

Table 2: The order of accuracy of the single vortex flow test using RK2+SL-MacCormack with a thickened mesh.

t = .5 t = 1
Grid Cells L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
256 – – – – 7.06 × 10−4 – 6.32 × 10−3 –
512 1.77 × 10−3 – 6.79 × 10−3 – 1.14 × 10−4 2.63 2.00 × 10−3 1.66
1024 5.29 × 10−4 1.74 1.83 × 10−3 1.89 2.04 × 10−5 2.48 5.12 × 10−4 1.97
2048 1.43 × 10−4 1.89 5.05 × 10−4 1.85 3.89 × 10−6 2.39 1.29 × 10−4 1.99

required in Ωn+1 for the backward advection step have already been defined by the first forward advection
step.

There are two ways to define ψ in Ω̂n+1
b before the backward advection step, which we call the single

filling scheme and the double filling scheme (both explained for the case of self-advection). The single filling
scheme defines ψ values in Ω̂n+1

b via the first forward advection step and thus requires more ghost cells at

time tn, see Figure 8(b) and compare the red dashed circle containing Ω̂n+1
b to the red dashed circle in

Figure 6(b) that contains Ωn+1. Alternatively, the double filling scheme places ghost cells around Ωn+1 that
are thick enough to cover Ω̂n+1

b as seen in Figure 8(c). This second step of ghost cell population allows
for a thinner Lagrangian mesh. We have implemented the single vortex flow test using the second order
accurate Runge-Kutta method on particles along with the SL-MacCormack method using both single and
double filling. Table 2 shows the results with double filling, and we note that the single filling scheme gives
commensurate results.

Note that the back and forth error compensation and correction method (BFECC) proposed in [17, 31,
32, 18] is a possible alternative to the SL-MacCormack method. Its first step is a forward advection step, the
same as that of SL-MacCormack. Its second step, however, backward advects ψ from Ωn+1 to Ωn instead of
from Ωn+1

b to Ωn+1 as in SL-MacCormack. The errors are then computed in Ωn by comparing the backward
advected ψ values with the original ψ values at time tn. Finally, the errors are forward advected again to
Ωn+1 and used to correct the results of the first forward advection step. The BFECC method exactly inverts
the source and target regions advecting the red solid circle to the blue solid circle and then back to the red
solid circle to compute the error. In this sense, the BFECC method better estimates the error of the first
forward advection step especially when considering that one might encounter boundary conditions in the
green solid circle such as a free surface or a solid object, which would pollute the error estimate.
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Table 3: The order of accuracy of the Eulerian single vortex flow test using SL with constant extrapolation.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 1.02 × 10−1 – 3.85 × 10−1 –
512 1.96 × 10−2 – 5.30 × 10−2 – 8.59 × 10−2 0.24 3.33 × 10−1 0.21
1024 1.83 × 10−2 0.09 4.63 × 10−2 0.20 6.17 × 10−2 0.48 2.83 × 10−1 0.23
2048 1.29 × 10−2 0.50 3.51 × 10−2 0.40 3.91 × 10−2 0.66 2.23 × 10−1 0.34

Table 4: The order of accuracy of the Eulerian single vortex flow test using SL with linear extrapolation.

t = .5 t = 1
Grid Cells L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
256 – – – – 1.34 × 10−1 – 2.48 × 10−1 –
512 3.04 × 10−2 – 6.64 × 10−2 – 8.65 × 10−2 0.63 1.70 × 10−1 0.55
1024 1.90 × 10−2 0.68 4.32 × 10−2 0.62 4.96 × 10−2 0.80 1.02 × 10−1 0.74
2048 1.06 × 10−2 0.85 2.48 × 10−2 0.80 2.68 × 10−2 0.89 5.65 × 10−2 0.85

3.3. Extrapolation

Next we consider a more practical unthickened Lagrangian mesh, and thus extrapolation needs to be
considered in ghost cells. The extrapolation is accomplished using a fast marching type method as in [2] or
a higher order accurate method as in [5] which both require a level set function defined locally on the MAC
grid. The level set is constructed by initializing the cells adjacent to the interface [37] and then using a fast
marching method to populate grid cells in a band [57, 58, 45, 11].

In order to examine the influence of extrapolation on the accuracy of advection, we have implemented the
single vortex flow test using purely Eulerian methods to exclude the influence of interacting with a Lagrangian
mesh. The particle level set method [20] is used to track the free surface, where the marker particles and
the level set are separately advected using a third order accurate TVD Runge-Kutta method [48], and the
spatial derivatives are calculated with a fifth order accurate Hamilton-Jacobi WENO scheme [29]. The scalar
field ψ defined at the centers of MAC grid cells is advected by either the semi-Lagrangian scheme or the
SL-MacCormack scheme. Ghost cells are extrapolated from inside the fluid region using the methods in
[5] with various orders of accuracy. The results using the semi-Lagrangian method are shown in Tables 3
and 4, and the results using the SL-MacCormack method are shown in Table 5. For the semi-Lagrangian
method, although constant extrapolation is theoretically sufficient to achieve first order accuracy, it slows
down the convergence, whereas linear extrapolation gives convergence rates more commensurate with that
in Table 1—and thus we prefer linear extrapolation. For the SL-MacCormack method, first order accuracy is
achieved using constant extrapolation, and second order accuracy is achieved using either linear or quadratic
extrapolation as expected.

Next we test the efficacy of the full hybrid mesh/grid approach using extrapolation. The first test uses
the forward Euler method on particles along with the semi-Lagrangian method and linear extrapolation on
the MAC grid, shown in Table 6. The second test uses the second order accurate Runge-Kutta method
on particles along with the SL-MacCormack method and linear extrapolation on the MAC grid, shown in
Table 7.

3.4. Cyclic Dependency

For the purpose of the advection tests in this section, we do not interpolate from the MAC grid to
particles that are not connected to the Lagrangian mesh or interpolate from the mesh elements connecting
the grid nodes of buffer cells to the MAC grid because this would result in a cyclic dependency which seems to
degrade the order of accuracy. However, in a real simulation, one cannot avoid these interpolations because
the degrees of freedom of the hybrid mesh/grid structure change due to other equations, such as the Poisson
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Table 5: The order of accuracy of the Eulerian single vortex flow test using SL-MacCormack with linear extrapolation.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 1.91 × 10−3 – 1.32 × 10−1 –
512 3.32 × 10−3 – 4.26 × 10−2 – 3.47 × 10−4 2.47 4.09 × 10−2 1.69
1024 7.94 × 10−4 2.06 1.20 × 10−2 1.83 7.09 × 10−5 2.29 9.84 × 10−3 2.06
2048 1.96 × 10−4 2.02 3.35 × 10−3 1.84 1.59 × 10−5 2.16 2.70 × 10−3 1.86

Table 6: The order of accuracy of the single vortex flow test using FE+SL with linear extrapolation.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 1.13 × 10−1 – 2.25 × 10−1 –
512 2.65 × 10−2 – 6.95 × 10−2 – 7.60 × 10−2 0.58 1.61 × 10−1 0.48
1024 1.69 × 10−2 0.65 4.13 × 10−2 0.75 4.37 × 10−2 0.80 9.95 × 10−2 0.69
2048 9.43 × 10−3 0.84 2.46 × 10−2 0.75 2.41 × 10−2 0.86 5.62 × 10−2 0.82

equation which enforces incompressibility. This then forces various interpolations in order to keep the hybrid
mesh/grid structure consistent.

To examine the influence of the cyclic dependency, we modified the tests in Tables 6 and 7 by includ-
ing those interpolations before each time step of advection. Table 8 shows the results using the forward
Euler method on particles and the semi-Lagrangian method on the MAC grid which remains first order
accurate. Table 9 shows the results using the second order accurate Runge-Kutta method on particles and
SL-MacCormack on the MAC grid, where the errors are higher than that in Table 7 but the order of accuracy
is roughly the same.

We have also implemented the rigid body rotation test from [20, 63] where cyclic dependency can slow
down convergence of the SL-MacCormack method. The domain size is [0, 1]× [0, 1], and the initial shape is a
slotted circle centered at (.5, .75) with a radius of .15, a slot width of .05, and a slot length of .25. The same
Gaussian function in the single vortex flow test is used to initialize the scalar field ψ inside the shape. The
constant vorticity field is given by u = 2π(.5− y) and v = 2π(x− .5) so that the disk finishes one resolution
at t = 1. The second order accurate Runge-Kutta method is used on particles, and the SL-MacCormack
method with linear extrapolation is used on the MAC grid. Table 10 shows the comparison between the
results with and without cyclic dependency after one revolution. The order of convergence of the L∞ norms
drops by about .5. However, the L1 norms still converge at a second order rate because the region being
polluted by the cyclic dependency occurs on a lower dimensional subset of the simulation.

Table 7: The order of accuracy of the single vortex flow test using RK2+SL-MacCormack with linear extrapolation.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 6.21 × 10−4 – 8.17 × 10−3 –
512 2.13 × 10−3 – 6.58 × 10−3 – 1.15 × 10−4 2.44 2.45 × 10−3 1.74
1024 5.64 × 10−4 1.91 1.81 × 10−3 1.86 2.23 × 10−5 2.36 6.51 × 10−4 1.91
2048 1.47 × 10−4 1.94 4.97 × 10−4 1.86 4.47 × 10−6 2.32 1.95 × 10−4 1.74
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Table 8: The order of accuracy of the single vortex flow test using FE+SL with linear extrapolation and cyclic dependency.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 1.25 × 10−1 – 2.36 × 10−1 –
512 2.98 × 10−2 – 6.37 × 10−2 – 7.85 × 10−2 0.67 1.62 × 10−1 0.54
1024 1.74 × 10−2 0.78 4.14 × 10−2 0.62 4.42 × 10−2 0.83 9.95 × 10−2 0.70
2048 9.50 × 10−3 0.87 2.46 × 10−2 0.75 2.42 × 10−2 0.87 5.62 × 10−2 0.82

Table 9: The order of accuracy of the single vortex flow test using RK2+SL-MacCormack with linear extrapolation and cyclic
dependency.

t = .5 t = 1
Grid Cells L1 Diff Order L∞ Diff Order L1 Error Order L∞ Error Order
256 – – – – 6.39 × 10−3 – 7.71 × 10−2 –
512 6.18 × 10−3 – 5.55 × 10−2 – 8.98 × 10−4 2.83 2.33 × 10−2 1.73
1024 1.14 × 10−3 2.43 1.30 × 10−2 2.09 1.62 × 10−4 2.47 5.92 × 10−3 1.98
2048 2.47 × 10−4 2.21 3.26 × 10−3 2.00 3.33 × 10−5 2.28 1.82 × 10−3 1.70

4. Poisson Equation

Aiming at incompressible flow in Section 6, we first consider the variable coefficient Poisson equation

∇ · β(~x)∇φ(~x) = f(~x), ~x ∈ Ω (1)

φ(~x) = g(~x), ~x ∈ ∂ΩD (2)

~n · ∇φ(~x) = h(~x), ~x ∈ ∂ΩN (3)

where Ω is the interior region, ∂ΩD and ∂ΩN are the portions of the boundary where Dirichlet and Neumann
boundary conditions are enforced, and ~n is the outward pointing normal. We test boundary conditions similar
to the incompressible flow problems of interest, i.e. Dirichlet boundary conditions everywhere, except where
Ω touches the Cartesian computational boundary where Neumann boundary conditions are applied.

4.1. MAC Grid Discretization

As noted in Section 2, we place MAC grid degrees of freedom sufficiently interior to the domain Ω such
that boundary conditions need not be considered on the MAC grid. Both φ and f are defined at cell centers,
and β is defined on cell faces where the components of ∇φ are evaluated. The volume-weighted divergence
operator is discretized by integrating the divergence of the vector field ~u = β∇φ over the volume of each
cell. This is computed as

Vc∇ · ~u =
∑

f∈Fc

(uf~nf ) · ~Af , (4)

Table 10: The order of accuracy of the rigid body rotation test using RK2+SL-MacCormack with linear extrapolation.

Without cyclic dependency With cyclic dependency
Grid Cells L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
256 1.11 × 10−3 – 3.23 × 10−3 – 3.86 × 10−3 – 1.30 × 10−2 –
512 3.27 × 10−4 1.76 9.07 × 10−4 1.83 9.58 × 10−4 2.01 5.08 × 10−3 1.35
1024 8.96 × 10−5 1.87 2.53 × 10−4 1.84 2.46 × 10−4 1.96 1.98 × 10−3 1.36
2048 2.30 × 10−5 1.96 7.06 × 10−5 1.84 6.29 × 10−5 1.97 7.63 × 10−4 1.37
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(a) a full one ring of elements (b) a Dirichlet boundary condition (c) near the MAC grid

Figure 9: In each subfigure, all elements of the tessellated Lagrangian mesh incident to the red node are shaded green. In the
case of Dirichlet boundary conditions (b), cyan triangles are created as virtual elements in order to complete a full one ring of
elements. Note that the blue node in subfigure (b) is displaced away from the red node for illustration purposes only, despite
the fact that they actually overlap in the implementation.

where Vc is the volume of cell c, Fc are the faces of cell c, uf is the component of ~u defined at face f ,

~nf is the unit normal pointing in the positive direction, and ~Af is the outward pointing area-weighted
normal. Equation (4) defines a matrix-vector multiplication where the vector of uf values is mapped to a

vector of volume-weighted divergences. The coefficients of this matrix are ~nf · ~Af , and thus the volume-
weighted gradient can be defined via the negated transpose of this matrix obtaining an expression of the
form (φf+ − φf−)(~nf · ~Af ) where φf+ and φf− are the φ values of the two cells incident to face f . Since
each face maps to two cells, there are two φ values involved in the gradient. For a grid face that connects an
interior cell with a buffer cell, only one side of the face is incident to a MAC grid cell. Thus the discretization
defined via the negated transpose is either φf+(~nf · ~Af ) or −φf−(~nf · ~Af ). The volume-weighted Poisson
equation is then discretized on the MAC grid as

−GTM−1Gφ = Vcf , (5)

where φ and f are vectors of φ and f values, Vc is a diagonal matrix of Vc values, G is the volume-weighted
gradient matrix, −GT is the volume-weighted divergence matrix, and M is a diagonal matrix assembled from
the Vc/β values defined for each face. Technically speaking, equation (5) is incomplete since no boundary
conditions or other equations are defined in order to couple the boundary of the interior MAC grid region
with the Lagrangian mesh.

4.2. Lagrangian Mesh Discretization

We define the tessellated Lagrangian mesh as the subset of particles and the grid nodes of buffer cells
that are connected into a mesh as described in Section 2. On the tessellated Lagrangian mesh, equations
(1), (2) and (3) are discretized using the node-based finite volume formulation of [8, 27]. At every node of
the tessellated Lagrangian mesh, we have degrees of freedom for φ and f . In addition, ~u = β∇φ is defined
at the nodes in a colocated fashion. Control volumes Vn for each node are defined as 1/(d + 1) times the
volume of all incident elements, where d is the spatial dimension (d = 2 or d = 3). This evenly splits the
volume of each element among all of its incident nodes.

In order to define the volume-weighted divergence, we consider the incident elements shown as green
elements in Figure 9. First, ~u is averaged from nodes to faces along the outer boundary of all incident
elements, e.g. from the two black nodes to face f in Figure 9(a). This can be expressed as

~uf =
1

d

∑

i∈Nf

~ui, (6)
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where Nf are the nodes incident to face f , and ~ui is the ~u value at node i. The volume-weighted divergence
is then computed by summing over the faces along the outer boundary of all incident elements (the boundary
of the green region) to obtain

Vn∇ · ~u =
1

d+ 1

∑

f∈Fb

~uf · ~Af , (7)

where Fb are the boundary faces of the incident elements. Without 1/(d+ 1) the summation is the volume-
weighted divergence for the green region, and the 1/(d+ 1) factor accounts for the fact that only a fraction
of this is assigned to the node similar to the way that volume is partitioned. In summary, a node in
equation (6) contributes to a face value ~uf for every face connected to that node, and then in equation (7)
each face contributes to the volume-weighted divergence for the two nodes element-wise opposite that face.
For example, a black node in Figure 9(a) contributes to the ~uf values for all its incident faces including
face f , and then face f contributes to the volume-weighted divergence for both the red and blue node.
Equations (6) and (7) combined define a matrix that maps a vector of ~u values for each node to a vector
of volume-weighted divergences for each node, and the coefficients of this matrix are described in the block
form by ~AT

f /(d(d+ 1)).
The volume-weighted gradient is defined via the negated transpose of this matrix obtaining

Vn∇φ =
1

d+ 1

∑

f∈Fn

(φf+ − φf−) ~Af

d
, (8)

where Fn are the faces incident to node n, and φf+ and φf− are the φ values at the two nodes element-wise
opposite face f . Since a node maps to all of its incident faces in equation (6), all incident faces Fn are
involved in the gradient. And since each face maps to its two element-wise opposite nodes in equation (7),
both of these nodes feed back into the gradient. One can define the value of φ per element using a standard
averaging as φt =

∑

i∈Nt
φi/(d+ 1), where Nt are the nodes incident to element t. Defining φt,f+ and φt,f−

as the φ values of the two elements incident to face f , we have that φf+ − φf− equals (d+ 1)(φt,f+ −φt,f−),
since the common nodes on the face cancel. Therefore, we can rewrite equation (8) as

Vn∇φ =
∑

f∈Fn

(φt,f+ − φt,f−) ~Af

d
. (9)

This can be reorganized by switching the order of summation to obtain

Vn∇φ =
∑

t∈Tn

φt

−
∑

f∈Ft,n

~Af

d
, (10)

where Tn are the mesh elements incident to node n, and Ft,n are the faces of element t that are incident to

node n. Since the sum of ~Af over the faces of each element is always zero, −
∑

f∈Ft,n

~Af can be replaced

with ~Aft,n
where ft,n is the face of element t that is element-wise opposite node n. Equation (10) then

becomes

Vn∇φ =
∑

t∈Tn

φt

~Aft,n

d
. (11)

If a node is on the boundary of the mesh where a Dirichlet boundary condition needs to be enforced, there
is not a full one ring of incident mesh elements. To complete a full one ring of elements, new virtual mesh
elements are created around the node. Since the virtual elements should not change the control volume of the
node, we create them by first duplicating the node at the same location and then connecting the duplicated
node with all boundary mesh faces that are incident to the original node, see Figure 9(b). Now with a full
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one ring of elements, the Dirichlet boundary condition is applied by replacing φt with gt in equation (11) for
each virtual element, where gt is the boundary condition defined at the barycenter of the virtual element.
Near the MAC grid, there is not a full one ring of incident mesh elements either as shown in Figure 9(c).
Here, instead of defining virtual elements as in the case of Dirichlet boundary conditions, we will connect this
partial discretization of the gradient to the partial discretization of the gradient on the MAC grid mentioned
after equation (5) – see Section 4.3.

If a node touches the boundary of the Cartesian computational domain, Neumann boundary conditions
are applied. The volume-weighted gradient is modified via

Vn∇φ = (I − ~n~nT )
∑

t∈Tn

φt

~Aft,n

d
+ Vnhn~n, (12)

where ~n is the normal direction of the Cartesian boundary, and hn is the Neumann boundary condition at
node n. Note that multiple projections are applied if the node is at the corner or edge of the Cartesian
computational domain and thus touches multiple walls. Projections are also applied to the corresponding
terms in the volume-weighted divergence operator to maintain the negated transpose relationship. For a node
at the intersection of the Dirichlet boundary and the boundary of the Cartesian computational domain, both
Dirichlet and Neumann boundary conditions are applied. Virtual elements are created around the node but
only connecting the duplicated node to its incident boundary faces that are not on the boundary of the
Cartesian computational domain. The Neumann boundary condition is then applied via the projection
mentioned above.

The discretized volume-weighted Poisson equation on the Lagrangian mesh can be written as

−ĜTM̂−1Ĝφ̂ = V̂cf̂ + ĜTM̂−1Ĝdg + ĜT
n β̂ĥ, (13)

where φ̂ and f̂ are the vectors of φ and f values, V̂c is a diagonal matrix of control volumes for each node,
Ĝ is the volume-weighted gradient matrix without the terms related to virtual elements and Ĝd are the
terms related to virtual elements, g is the vector of Dirichlet boundary conditions, −ĜT is the volume-
weighted divergence matrix with the terms related to Neumann boundary conditions projected off and −ĜT

n

are the terms projected off for Neumann boundary conditions, β̂ is a diagonal matrix of β values, ĥ is the
vector of Neumann boundary conditions, and M̂ is a diagonal matrix with the Vn/β values defined for each

component of the gradient at the nodes. Note that Ĝ can be alternatively factored into ĜeH where H is an
interpolation matrix that averages the nodal φ values to the barycenters of each mesh element to obtain φt

in equation (11), and Ĝe is the element-based gradient matrix constructed from equation (11).

4.2.1. Lagrangian Mesh Discretization Orthogonality

Since all three components of the gradient behave similarly, we only consider the y-component. From
equation (11), the y-component of the volume-weighted gradient is given by

(Vn∇φ)y =
∑

t∈Tn

φt

Ay
ft,n

d
, (14)

where Ay
ft,n

is the y-component of ~Aft,n
. Note that Ay

ft,n
equals the area of face ft,n projected onto the

plane perpendicular to the y-axis, and φt acts on this projected region. We divide Tn into two subsets,
T+ = {t|Ay

ft,n
≥ 0} and T− = {t|Ay

ft,n
< 0} shown as green and brown elements in Figure 10. The

contribution of T+ to (Vn∇φ)y is

(Vn∇φ)y
T+ =

∑

t∈T+

φt

Ay
ft,n

d
= φT+AT+ ,
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Figure 10: The composite face and the composite φ samples (red dots). Note that A
T+d is the entire red line, and A

T+ is the
composite face which is half the red line.

where we have lumped all green elements into a single composite element with composite face area AT+ and
composite φ value φT+ given by

AT+ =
∑

t∈T+

Ay
ft,n

d
, φT+ =

∑

t∈T+

φt

Ay
ft,n

AT+d
. (15)

φT+ is an affine combination of φt values, and thus its effective location xT+ can be computed in the
same fashion as equation (15) to obtain

xT+ =
∑

t∈T+

xt

Ay
ft,n

AT+d
, (16)

where xt is the barycenter of element t. One can express xt as

xt =
1

d+ 1
xn +

d

d+ 1
xft,n

,

where xn is the location of the central node n, and xft,n
is the barycenter of face ft,n. Substituting this into

equation (16) yields

xT+ =
1

d+ 1
xn +

d

d+ 1

∑

t∈T+

xft,n

Ay
ft,n

AT+d
, (17)

since
∑

t∈T+

Ay

ft,n

A
T+d = 1. Let x

y
ft,n

be the projection of xft,n
onto the plane perpendicular to the y-axis, then

x
y
ft,n

is the centroid of Ay
ft,n

and x
y
c+ =

∑

t∈T+ x
y
ft,n

Ay

ft,n

A
T+d is the centroid of AT+d (the red line in Figure 10).

Then equation (17) can be written as

xT+ =
1

d+ 1
xn +

d

d+ 1
xc+ , (18)

where xc+ =
∑

t∈T+ xft,n

Ay

ft,n

A
T+d . And since AT+ = −AT− we can similarly derive

xT− =
1

d+ 1
xn +

d

d+ 1
xc− .
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Figure 11: Mesh structure near the boundary between the tessellated Lagrangian mesh and the MAC grid. For illustration
purposes, the mesh structure in subfigure (b) is hidden except for the mesh faces lying on the intermediate face f .

Since xc+ and xc− lie above and below x
y
c+ = x

y
c− , the segment connecting them is perpendicular to the red

line (plane in three spatial dimensions). Thus from the definition of xT+ and xT− , the segment connecting
them is also perpendicular to the red line (plane) proving orthogonality.

If node n is on the Dirichlet boundary, a full one ring of elements is completed by creating virtual elements,
and the above discussion still applies. If node n touches the Cartesian boundary where Neumann boundary
conditions are enforced, the component of the gradient along the normal direction of the Cartesian boundary
is projected off. For the remaining components, as shown in Figure 10(b), the composite face lumped from
the green elements is also identical to that from the brown elements, and the same argument follows.

4.3. Coupled Discretization

On the boundary between the MAC grid and the tessellated Lagrangian mesh, we define ∇φ only on the
nodes of the tessellated Lagrangian mesh and not on the faces of the MAC grid. Generally, one may define
∇φ on both sets of degrees of freedom and connect them using continuity constraints as in [42]. However,
we choose not to introduce these extra degrees of freedom and constraints. For a node incident to the MAC
grid, the blue node in Figure 11(a), the φ values defined at the nodes of its incident mesh elements (the
green elements) as well as those defined for its incident MAC grid cells (cells c1 and c2) form a one ring of
φ samples. For the x component of the gradient, the φ values of cells c1 and c2 act on the MAC grid face
between them and thus make no contribution to the x component of the gradient at the blue node. In fact,
since both the cells adjacent to the green face are buffer cells with mesh elements, the Lagrangian mesh
discretization for the x component of the gradient at the blue node proposed in Section 4.2 is sufficient. For
the y-component of the gradient, since both the cells below the red and blue faces contain no mesh elements,
cells c1 and c2 need to be considered. Because of the way the mesh is constructed in buffer cells, each incident
mesh element lies entirely within a single buffer cell. Thus we lump all incident mesh elements within a single
buffer cell into a single composite element. This allows the coupled discretization to be written as

(Vn∇φ)y =
∑

f∈F y
n

(

φ̂f+,nÂf+,n −Wf,nφf−Af

)

, (19)

where F y
n are the relevant y-component MAC grid faces (the red and blue faces in Figure 11(a)), φ̂f+,n is the

composite φ value on the positive side of face f , Âf+,n is the composite face area on the positive side of face
f , φf− is the MAC grid φ value of the cell below face f , Af is the area of face f , and Wf,n is a value defined
for face f and node n. This distributes a fraction of the MAC grid partial gradient −φf−Af to node n
using Wf,n as the distribution weight. Wf,n are defined for all boundary faces of the MAC grid and their
incident nodes, and these values can be organized into a matrix WT . The sum of the distribution weights
for each MAC grid face should be 1, i.e. columns of WT should sum to 1, and this can be accomplished by
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Figure 12: Subfigures (a) and (b) show the φ sample locations near the MAC grid before and after enforcing orthogonality.
Subfigure (c) shows a portion of the 3D mesh structure inside a buffer cell. The cell face given by i1i3i4i2 separates a buffer
cell (above) from an interior cell (below). For illustration purposes, only the mesh elements incident to node i1 are shown, i.e.
tetrahedra i1i3i4i5 and i1i4i2i5.

making W an interpolation matrix as in [42, 43]. Wf,nAf can be thought of as the face area on the negative

side, which should equal the face area on the positive side, i.e. Âf+,n = Wf,nAf . In two spatial dimensions

Âf+,n = Af/2, and thus we set Wf,n = 1/2. In three spatial dimensions, Âf+,n either equals Af/3 (e.g. for
nodes i1 and i4 in Figure 11(b)) or equals Af/6 (e.g. for nodes i2 and i3), and thus we set Wf,n to 1/3 or
1/6 accordingly.

Next consider the control volume Vn for this hybrid node. The x component of the gradient only has
contributions from the incident mesh elements, and thus the corresponding control volume is defined to be
1/(d+1) times the volume of the incident green elements as in Section 4.2. The y-component of the gradient
involves both the incident mesh elements and the incident MAC grid cells. The volume fraction from the
tessellated Lagrangian mesh is computed in the same fashion as for the x component. The MAC grid dual
cell volume within each brown region equals Vc/2, and we assign this to the nodes in the same way WT

assigns the MAC grid face area to the nodes, i.e. the total MAC grid volume assigned to the node equals
∑

f∈F y
n
Wf,nVc/2.

MAC grid cell centers now contribute to the gradients defined on the nodes of the tessellated Lagrangian
mesh on adjacent MAC grid cell faces bordering buffer cells, and thus these nodes contribute to the diver-
gences of the MAC grid cells. The contribution from one of these boundary MAC grid cell faces to the
volume-weighted divergence can be expressed as

∑

n∈Nf
(Wf,n~un) · ~Af , which takes a weighted average of

the nodal ~u values and dot products it with the area-weighted normal of the face. In two spatial dimensions,
with Wf,n = 1

2 it averages the ~u values of the two nodes, whereas in Figure 11(b) it would take one third
of nodes i1 and i4 and one sixth of nodes i2 and i3. Recall that we have chosen to discretize the gradients
on the boundary Lagrangian mesh nodes and not on the boundary MAC grid faces. Because of this, MAC
grid degrees of freedom contribute to the gradients at the boundary nodes, but the boundary nodes do not
contribute to the gradients on the MAC grid. Thus, the nodal volume-weighted divergence computed via
the negated transpose of the gradient has no contribution from the MAC grid – and therefore the nodal
divergences are still computed using the one ring on the tessellated Lagrangian mesh only.

4.3.1. An Orthogonal Coupled Discretization – 2D

Equation (19) requires further modification of φ̂f+,n in order to obtain an orthogonal discretization. First
consider the y-component of the gradient at the blue node in Figure 12(a). Similar to the discussion for
Figure 11(a), the mesh elements incident to the blue node inside the left green cell (elements t1 and t2) are

lumped into a single composite element with a composite φ value φ̂f+,b and a composite face area Âf+,b.
Since the red face is vertical, element t1 does not contribute to the y-component of the gradient, leaving only
the contribution from element t2. Thus φ̂f+,b is located at the centroid of element t2 (the green square), and
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Âf+,b equals half of the region projected from the green face onto the plane perpendicular to the y-axis, i.e.
Af/2. Similar statements hold for the green cell to the right, and the composite φ value (the black square)
is located at the centroid of element t3. The net effect of the green and black squares with cells c1 and c2
averages out to be orthogonal. However, in the case of the red node with MAC grid cell c3 to its left, there
is no chance for symmetric cancellation. Therefore, we approach symmetry in a cell by cell (i.e. buffer cell
by buffer cell) manner, without considering any potential symmetric cancellation between cells.

A cell composed by t1 and t2 is a typical buffer cell up to symmetries. As discussed above, the y-
component of the gradient within the cell for the blue node is obtained by connecting the green and brown
squares. For the red node, its composite φ value φ̂f+,r is given by the centroid of element t1 denoted by

the red square, and its composite face area Âf+,r is given by one half of the region projected from the
blue face onto the plane perpendicular to the y-axis, i.e. Af/2. Whether considering the gradient at the
red node or at the blue node, we combine elements t1 and t2 averaging the net location of the red and
green squares to obtain the blue square in Figure 12(b) resulting in an orthogonal discretization. That is

in equation (19) for the blue node we replace φ̂f+,b with 1
2 (φ̂f+,r + φ̂f+,b), and in equation (19) for the red

node we similarly replace φ̂f+,r with 1
2 (φ̂f+,r + φ̂f+,b). This is equivalent to collecting the net effect of φ̂f+,r

and φ̂f+,b as (φ̂f+,r + φ̂f+,b)
Af

2 since Âf+,r = Âf+,b =
Af

2 , and distributing it back to the two nodes using

WT as 1
2 (φ̂f+,r + φ̂f+,b)

Af

2 . In summary in order to obtain an orthogonal discretization, equation (19) is
modified to

(Vn∇φ)y =
∑

f∈F y
n









∑

i∈Nf

Wf,iφ̂f+,i



 Âf+,n −Wf,nφf−Af



 .

Defining φ̂f+ =
∑

i∈Nf
Wf,iφ̂f+,i and noting that Âf+,n = Wf,nAf , the above equation can be rewritten as

(Vn∇φ)y =
∑

f∈F y
n

(φ̂f+ − φf−)Wf,nAf . (20)

Here φ̂f+ can be thought of as an effective φ value of the entire buffer cell.
The volume-weighted divergence is modified accordingly to maintain the negated transpose relationship.

Since equation (20) does not change the contribution from the MAC grid to the gradients on boundary nodes,
the contribution from boundary nodes to the divergence on the MAC grid is also unchanged. However, the
divergence on the tessellated Lagrangian mesh is modified. Note that φ̂f+ is a weighted average of the φ
values from the four nodes of the buffer cell, which means that the gradient at each node of a boundary
face obtains contributions from every node of the buffer cell. Therefore the divergence at each node of the
buffer cell receives contributions from each node of its boundary face. For example in Figure 12(a), the
divergence at the green node would normally include contributions from the green, yellow, blue and brown
nodes. However, with our new orthogonal discretization it would also include the contributions from the red
and black nodes, since the green node is used to calculate the gradients at the red and black nodes.

4.3.2. An Orthogonal Coupled Discretization – 3D

In three spatial dimensions, orthogonality is also enforced independently within each buffer cell. As
pointed out in [3], a cube can be decomposed into either five or six tetrahedra with each exterior face cut
diagonally by two triangles. The meshing algorithm described in Section 2 randomly perturbs the positions
of all relevant particles as well as the nodes of buffer cells so that no more than four particles or nodes are
on the same circumsphere. It then generates a tetrahedron whenever its circumsphere contains no other
particles or nodes. Since the perturbation is random, all possible decompositions of a buffer cell may appear.

Consider the y-component of the gradient at the nodes of the intermediate cell face in Figure 12(c). For
each of these nodes, we lump its incident mesh elements inside the buffer cell to obtain a composite face and
a composite φ value. Note that these tetrahedral mesh elements have three types of triangle faces. The first
type of faces are incident to the node and lie on the cell faces of the buffer cell, e.g. i1i5i3, i1i3i4, i1i4i2 and
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Table 11: The order of accuracy for the 2D Poisson equation test.

Grid Cells L1 Error Order L∞ Error Order
256 3.35 × 10−5 – 1.39 × 10−2 –
512 6.84 × 10−6 2.29 4.18 × 10−3 1.73
1024 1.51 × 10−6 2.18 1.19 × 10−3 1.82
2048 3.47 × 10−7 2.12 3.08 × 10−4 1.95

i1i2i5 for node i1. The second type of faces are common faces between mesh elements, e.g. i1i4i5. The third
type of faces are those element-wise opposite the node, e.g. i3i4i5 and i4i2i5. Ignoring the second type, the
first and third types of faces form a polyhedron. Thus, the sum of outward pointing area-weighted normals
over the first type of faces equals negative the sum over the third type. Therefore, the projection of the
mesh faces element-wise opposite the node (the third type) onto the plane perpendicular to the y-axis is
equal to the projection of those lying on the cell faces of the buffer cell (the first type). The only non-zero
contributions come from those lying on the top and bottom cell faces of the buffer cell (in this case i1i3i4
and i1i4i2). In general, this is either one or two triangles, and the composite face area is either Af/6 or
Af/3 respectively.

Next consider the locations of the composite φ values. With regard to orthogonality, only the projections
of these locations onto the plane perpendicular to the y-axis are of concern. Define x̂

y
f+,i1

to be such a

projection for node i1. The derivation of equation (18) shows that x̂
y
f+,i1

is located three-fourths of the way
from node i1 to the centroid of the region projected from all the mesh faces element-wise opposite node i1
onto the plane perpendicular to the y-axis. As discussed above, this projected region equals the incident
triangles lying on the top and bottom cell faces of the buffer cell (in this case i1i3i4 and i1i4i2). Therefore,
x̂

y
f+,i1

is located three-fourths of the way from node i1 to the center of the intermediate cell face. In general,
the centroid of the region projected from the element-wise opposite faces is either located at the center of
the intermediate cell face (for nodes i1 and i4) or located at the centroid of one of the two triangles on that
cell face (for nodes i2 and i3). Based on this observation, we can also compute x̂

y
f+,i2

, x̂
y
f+,i3

, and x̂
y
f+,i4

.
Similar to the modification in two spatial dimensions, we collect the net effect from the four nodes as

i4
∑

i=i1

φ̂f+,iÂf+,i =
(

φ̂f+,i1 + φ̂f+,i4

) Af

3
+
(

φ̂f+,i2 + φ̂f+,i3

) Af

6
= φ̂f+Af ,

and distribute φ̂f+Af back to all four nodes using WT .

4.4. Numerical Results

We have implemented two tests from [22]. The first test uses a computation domain of [−1.5, 1.5]× [0, 3]
in two spatial dimensions, and ∂Ω is parameterized by (x(θ), y(θ)) where x(θ) = (1 + .4 cos(5θ)) cos(θ) and
y(θ) = (1 + .4 cos(5θ)) sin(θ) with θ ∈ [0, 2π], see Figure 13. An exact solution of φ = ex(x2 sin(y) + y2)
and β = 2 + sin(xy) is used in Ω with Dirichlet boundary conditions enforced on ∂Ω. The second test uses
a computational domain of [0, 1] × [0, 1] × [0, 1] in three spatial dimensions, and ∂Ω is a sphere centered at
(.5, .5, .5) with radius .3. An exact solution of φ = sin(4πx) sin(4πy) sin(4πz) and β = xyz is used in Ω with
Dirichlet boundary conditions enforced on ∂Ω. Tables 11 and 12 show second order accuracy. To examine
the convergence behavior with Neumann boundary conditions, we modified the above tests by cutting the
computational domain in half so that part of Ω touches the computational domain boundary where Neumann
boundary conditions are applied. Specifically, the computational domain is [−1.5, 1.5]× [1.5, 3] in two spatial
dimensions and [0, 1]×[.5, 1]×[0, 1] in three spatial dimensions. Tables 13 and 14 show second order accuracy.
Note that all tests in this section are solved using the conjugate gradient method, and the CG iteration stops
when the L∞ norm of residual is below 10−8. Table 15 shows the relation between the number of CG
iterations and the grid resolution for each test.
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Table 12: The order of accuracy for the 3D Poisson equation test.

Grid Cells L1 Error Order L∞ Error Order
128 9.65 × 10−4 – 1.20 × 10−1 –
256 1.55 × 10−4 2.64 3.84 × 10−2 1.64
512 3.40 × 10−5 2.19 1.08 × 10−2 1.83
1024 4.35 × 10−6 2.97 2.41 × 10−3 2.17

Table 13: The order of accuracy for the 2D Poisson equation test with Neumann boundary conditions.

Grid Cells L1 Error Order L∞ Error Order
256 1.10 × 10−4 – 1.16 × 10−2 –
512 2.03 × 10−5 2.44 2.72 × 10−3 2.10
1024 4.14 × 10−6 2.29 7.30 × 10−4 1.90
2048 9.09 × 10−7 2.19 1.76 × 10−4 2.05

Table 14: The order of accuracy for the 3D Poisson equation test with Neumann boundary conditions.

Grid Cells L1 Error Order L∞ Error Order
128 1.08 × 10−3 – 1.08 × 10−1 –
256 1.74 × 10−4 2.63 2.93 × 10−2 1.88
512 2.88 × 10−5 2.60 8.43 × 10−3 1.80
1024 4.98 × 10−6 2.53 2.09 × 10−3 2.02

Table 15: The number of CG iterations for the Poisson equation tests.

Grid Cells 2D 3D 2D with Neumann 3D with Neumann
128 – 439 – 422
256 660 550 643 654
512 1275 1039 1189 1095
1024 2442 2014 2284 1963
2048 4693 – 4387 –
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Figure 13: The interface of Ω for the 2D Poisson equation test.

5. Heat Equation

Consider the heat equation

∂φ(~x, t)

∂t
= ∇ · (β∇φ(~x, t)), ~x ∈ Ω (21)

φ(~x, t) = g(~x, t), ~x ∈ ∂ΩD (22)

~n · ∇φ(~x, t) = h(~x, t), ~x ∈ ∂ΩN (23)

where β is the spatially constant diffusion coefficient (spatially varying viscosity is not considered). We test
boundary conditions similar to what would apply to the viscosity term in the incompressible flow problems
of interest, i.e. Neumann boundary conditions everywhere except on the Cartesian computational domain
boundary where Dirichlet boundary conditions are applied.

We summarize the discretization of the volume-weighted Poisson equation of Section 4 via

−ḠTM̄−1Ḡφ̄ = V̄f̄ + b̄, (24)

where φ̄ =

(

φ

φ̂

)

is the combined vector of unknowns, b̄ is the combined vector of boundary conditions,

and the other terms are defined likewise. Then the backward Euler time integration scheme is given by

(V̄ + ∆tḠT M̄−1Ḡ)φ̄
n+1

= V̄φ̄
n
− ∆tb̄n+1. (25)

Note that equation (25) is a volume-weighted form of equation (21) in order to maintain symmetry along
the lines of the volume-weighted divergence −ḠT . For second order accuracy the trapezoidal rule time
integration scheme is given by

(V̄ +
∆t

2
ḠTM̄−1Ḡ)φ̄

n+1
= (V̄ −

∆t

2
ḠTM̄−1Ḡ)φ̄

n
−

∆t

2
(b̄n + b̄n+1). (26)

Dirichlet boundary conditions are applied in the same fashion as in Section 4.2. To enforce the Neumann
boundary condition at a node, we first compute the boundary normal at the node by summing over the
outward pointing area-weighted normals of the boundary mesh faces incident to that node and normalizing
the result. If the node is at the intersection of Dirichlet and Neumann boundaries, only those boundary faces
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Table 16: The order of accuracy for the 2D heat equation test.

Grid Cells L1 Error Order L∞ Error Order
256 9.29 × 10−6 – 2.82 × 10−3 –
512 1.67 × 10−6 2.48 8.62 × 10−4 1.71
1024 3.41 × 10−7 2.29 2.11 × 10−4 2.03
2048 7.48 × 10−8 2.19 5.93 × 10−5 1.83

Table 17: The order of accuracy for the 3D heat equation test.

Grid Cells L1 Error Order L∞ Error Order
128 5.83 × 10−7 – 1.37 × 10−4 –
256 1.13 × 10−7 2.37 3.79 × 10−5 1.85
512 2.21 × 10−8 2.35 1.02 × 10−5 1.89

lying on the Neumann boundary are taken into account. The Neumann boundary condition is then enforced
by projecting orthogonal to the boundary normal as described in Section 4.2.

We have implemented two tests from [22]. The first test uses the same computational domain as for
Table 13. An exact solution of φ = e−2t sin(x) sin(y) and β = 1 is used in Ω with Neumann boundary
conditions enforced on ∂Ω except on the Cartesian computational domain boundary where Dirichlet boundary
conditions are applied. The second test uses a computational domain of [0, .5] × [.25, .5] × [0, .5] in three
spatial dimensions, and ∂Ω is a semisphere centered at (.25, .25, .25) with a radius of .15. An exact solution
of φ = e−3t sin(x) sin(y) sin(z) and β = 1 is used in Ω with Neumann boundary conditions enforced on ∂Ω
except on the Cartesian computational domain boundary where Dirichlet boundary conditions are applied.
Both tests integrate the solution from time t = 0 to t = .1 using the trapezoidal rule time integration scheme
and the time step size ∆t = .5∆x. Tables 16 and 17 show second order accuracy. The conjugate gradient
method with a Jacobi preconditioner is used in both tests. The same method is also used in the other tests
in this section.

5.1. Neumann Boundary Orthogonality

As shown in Section 4.2.1, the orthogonality along a certain direction holds if the positive and negative
composite faces along that direction are identical. For Neumann boundary conditions on the Cartesian
boundary as shown in Figure 10(b), the positive and negative composite faces are identical because the mesh
abuts a flat surface perpendicular to the boundary normal. In the case of Neumann boundary conditions on
the free surface, this is not true, and orthogonality is not obtained in three spatial dimensions – although
orthogonality is obtained in two spatial dimensions.

In two spatial dimensions as shown in Figure 14(a), the red dashed line is perpendicular to the boundary
normal at n0 because the boundary normal is computed by summing over the area-weighted normals of the
yellow faces which form a closed polygon with the red dashed line. Since the gradient along the boundary
normal is projected off, only the gradient perpendicular to the boundary normal needs to be examined for
orthogonality (i.e. along the normal direction of the red solid line). Note that we no longer consider the
gradient independently along Cartesian directions when using Neumann boundary conditions to project out

Table 18: The order of accuracy for the 2D Poisson equation test with Neumann boundary conditions on ∂Ω and Dirichlet
boundary conditions on the Cartesian boundary.

Grid Cells L1 Error Order L∞ Error Order
256 1.28 × 10−4 – 2.27 × 10−2 –
512 2.01 × 10−5 2.67 6.70 × 10−3 1.76
1024 4.45 × 10−6 2.18 1.53 × 10−3 2.13
2048 1.22 × 10−6 1.87 3.32 × 10−4 2.20
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Figure 14: Mesh structure near a node on the free boundary boundary. Subfigure (b) shows all the tetrahedra incident to node
n0 (the five tetrahedra connecting n0 with each blue triangle). Nodes n0 to n5 lie on ∂Ω, and node n6 is inside Ω. Note that
nodes n1 to n5 are not coplanar. The red arrow shows the boundary normal at node n0, and the red dashed line represents a
plane with normal n0 (drawn as a line since it is parallel to the view direction).

Table 19: The order of accuracy for the 3D Poisson equation test with Neumann boundary conditions on ∂Ω and Dirichlet
boundary conditions on the Cartesian boundary.

Grid Cells L1 Error Order L∞ Error Order
128 1.07 × 10−3 – 1.03 × 10−1 –
256 1.79 × 10−4 2.58 3.15 × 10−2 1.70
512 3.57 × 10−5 2.33 7.32 × 10−3 2.11

a direction. The half one ring of element-wise opposite mesh faces for node n0 (the blue faces) can be
completed by the red dashed line forming a closed polygon similar to the case in Figure 10(b), so the blue
faces of the green elements and those of the brown elements are projected onto the same region on the red
solid line, i.e. the positive and negative composite faces are identical. Thus the orthogonality holds in two
spatial dimensions.

In three spatial dimensions as shown in Figure 14(b), the blue triangles are the mesh faces element-wise
opposite node n0, and the elements incident to node n0 are those connecting the blue triangles with n0. The
red arrow is the boundary normal at node n0, and the red dashed line represents a plane with normal n0

(drawn as a line since it is parallel to the view direction of the figure). To enforce the Neumann boundary
condition, the gradient along the red arrow is projected off, leaving the gradients parallel to the plane given
by the red dashed line. Since nodes n1 to n5 are not coplanar (which is common), there is a discrepancy
between the positive and negative composite faces, i.e. the discretization is not orthogonal. Fortunately,
this discrepancy converges to zero under mesh refinement if ∂Ω is smooth, since the boundary mesh faces
incident to n0 converge to a flat surface similar to the case in Figure 10(b) where orthogonality holds.

To test the order of accuracy of the spatial discretization with Neumann boundary conditions on the
free surface, we modified the Poisson equation tests from Tables 13 and 14. Instead of Dirichlet boundary
conditions, Neumann boundary conditions are enforced on ∂Ω. In addition, Dirichlet boundary conditions
are applied on the Cartesian computational domain boundary. Table 18 shows second order accuracy in two
spatial dimensions as expected. Table 19 shows second order accuracy in three spatial dimensions, which
indicates the tendency toward orthogonality under mesh refinement.
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Figure 15: The φ degrees of freedom are defined at the green, yellow and red dots shown in Subfigure (a). The red boxes
delineated by the dotted lines are the control volumes associated with the red dots, while the yellow boxes are the control
volumes associated with the yellow dots. ∇φ is computed at the green dots as well as at the red triangles shown in Subfigure (b).
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Figure 16: The volume-weighted gradients are defined at the common boundaries between MAC grid control volumes and are
computed by differencing the associated red or yellow dots weighted by the area of their common face illustrated by the black
line segments. In Subfigures 16(c), 16(d) and 16(e), the φ values at the yellow dots are interpolated from their neighboring
nodes of the tessellated Lagrangian mesh (the green dots) using the W matrix.

5.2. MAC Grid Discretization

In order to address a spatially constant viscosity term in the Navier-Stokes equations, we need to store
φ on the MAC grid faces instead of at the MAC grid cell centers. Without loss of generality, we consider
the x-component MAC grid faces denoted by the red and yellow dots in Figure 15(a). On the tessellated
Lagrangian mesh, φ is still stored at the nodes. We define two types of control volumes on the MAC grid:
the dual cells centered at each red dot, and the half dual cells adjacent to each yellow dot.

5.2.1. Volume-Weighted Gradient

On the MAC grid, we define the volume-weighted gradients of φ at the common boundaries between
MAC grid control volumes denoted by the red triangles in Figure 15(b). Different cases of discretization
are illustrated in Figure 16. The gradient between two red dots (Figures 16(a) and 16(b)) is defined in
standard fashion as explained in Section 4.1. The gradient in the x-direction between a red and a yellow dot
(Figure 16(c)) is also defined in standard fashion except that the φ value at the yellow dot is interpolated
from its neighboring nodes of the tessellated Lagrangian mesh using the W matrix defined in Section 4.3.
The gradient in the y-direction between a red and a yellow dot (Figure 16(d)) or between two yellow
dots (Figure 16(e)) is defined similarly but with only one half the area of a regular MAC grid face. On the
tessellated Lagrangian mesh, the volume-weighted gradients are still defined at the nodes, and the Lagrangian
mesh discretization as explained in Sections 4.2, 4.3.1 and 4.3.2 remains unchanged. However, at the nodes
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Figure 17: The volume-weighted gradient in the x-direction at a node incident to the MAC grid (the black dot in each subfigure).
The red line segments are x-component MAC grid faces between two buffer cells, and the blue line segments are x-component
MAC grid faces between a buffer cell and an interior MAC grid cell. The φ values at the green and blue squares as well as the
φ values at the yellow dots are interpolated from neighboring φ samples, and the gradient at each black dot is computed by
differencing these interpolated values across each red and/or blue face.

incident to the MAC grid, this discretization only computes a partial gradient. In order to compute a full
gradient at those nodes, we proceed as follows.

First, we consider the gradient in the x-direction at the black nodes in Figure 17 and handle each
subfigure respectively as follows. In the case of Figure 17(a), the discretization as in Section 4.2 is sufficient
to compute the gradient in the x-direction as explained in Section 4.3. Within each buffer cell, the mesh
elements incident to the black node can be lumped into a single composite element to obtain a composite φ
value located at the green squares. For details, see the discussion before equation (19). In this configuration,
the gradient in the x-direction at node n does not depend on the MAC grid degrees of freedom. In the case
of Figure 17(b), the Lagrangian mesh discretization as in Sections 4.3.1 and 4.3.2 is used to interpolate the
φ values from the nodes of the buffer cell to the location of the blue square. For details, see the derivation
towards equation (20) and compare this blue square to the blue square in Figure 12(b). To the right of the
blue square, the yellow and red dots both lie on the same line passing through the blue square perpendicular
to the blue face f1, i.e. differencing the blue square with either the yellow or red dot would both result in
an orthogonal discretization. However, it is complicated to merge the yellow control volume with the red
control volume when considering the volume-weighted divergence, and since the gradient and divergence are
related by the transpose operator, the yellow dot and its control volume are used for our discretization. We
compute the gradient in the x-direction at the black node as (φf+

1

− φf−

1

)Wf1,nAf1
where φf+ and φf− are

the φ values at the yellow dot and the blue square respectively. This discretization can be extended to the
case of Figure 17(c) by similarly defining a blue square for each buffer cell and then computing the gradient

in the x-direction at the black node as
∑f2

f=f1
(φf+ −φf−)Wf,nAf . In the case of Figure 17(d), the two green

squares are defined as in Figure 17(a), and the blue square is defined as in Figure 17(b). The gradient in the

x-direction at the black node can then be written as
∑f2

f=f1
(φf+ −φf−)Wf,nAf where the terms are defined

as in Figures 17(a) and 17(b).
Next, consider the gradient in the y-direction at the black nodes shown in Figure 18 (the z-direction in

three spatial dimensions is handled similarly). In the case of Figure 18(a), the discretization in Section 4.2
is sufficient to compute the gradient in the y-direction similar to Figure 17(a). In the case of Figure 18(b),
the blue square is defined similarly as in Figure 17(b). We average the φ values from the two neighboring
red dots to the brown square located at the center of the interior cell below face f1. The gradient in the
y-direction at the black node can then be written as (φf+

1

− φf−

1

)Wf1,nAf1
where φf+

1

and φf−

1

are the φ

values at the blue and brown squares respectively. In the case of Figure 18(c), we simply combine two
separate discretizations along the lines of Figure 18(b) just as in Figure 17(c). In the case of Figure 18(d),
we combine the discretizations from Figures 18(a) and 18(b) except that the brown square is computed by
averaging a yellow and red dot.
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Figure 18: The volume-weighted gradient in the y-direction at a node incident to the MAC grid (the black dot in each subfigure).
The red line segments are y-component MAC grid faces between two buffer cells, and the blue line segments are y-component
MAC grid faces between a buffer cell and an interior MAC grid cell. The φ values at the green, blue and brown squares are
interpolated from neighboring φ samples, and the gradient at each black dot is computed by differencing these interpolated
values across each red and/or blue face.
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Figure 19: The volume-weighted divergence at a red dot is computed from the neighboring ~u samples denoted by the red
triangles (Subfigure (a)) or denoted by both the red triangles and the green dots (Subfigures (b) and (c)).

5.2.2. Volume-Weighted Divergence

The volume-weighted divergence of a quantity ~u (e.g. ~u = β∇φ) is defined via the negated transpose of
the gradient. On the tessellated Lagrangian mesh, since the nodal φ values contribute to the nodal gradients
using the Lagrangian mesh discretization as explained in Sections 4.2, 4.3.1 and 4.3.2, the nodal ~u values also
contribute to the nodal divergences as explained in those sections. On the MAC grid, the volume-weighted
divergences are computed at the red and yellow dots colocated with the MAC grid φ samples in Figure 15(a).
As shown in Figures 16(c), 16(d) and 16(e), the nodal φ values of the tessellated Lagrangian mesh contribute
to the gradients on the MAC grid via the definition of the yellow dots interpolated from the green dots using
W. This means that the divergences at those green dots should be modified based on the ~u values from the
MAC grid locations designated by the red triangles in those subfigures. We accomplish this in a two-step
illustrative construction which first defines divergence on the yellow dots and then map that divergence back
to the appropriate green parents using WT . Conversely, the red and yellow degrees of freedom on the MAC
grid contribute to the gradients on the tessellated Lagrangian mesh as illustrated in Figures 17 and 18,
and thus the divergence on the MAC grid depends on the tessellated Lagrangian mesh as dictated by the
transpose operator.

Consider the divergence at the red dot shown in Figure 19(a). Since the red dot contributes to the
gradients at the surrounding faces in standard fashion, the divergence at the red dot is computed using
the ~u values at those faces also in standard fashion. In the case of Figure 19(b) the φ value at the red dot
contributes to the gradients at nodes n1, n2 and n3 with weights −Wf1,n1

Af/2, −(Wf1,n2
+Wf2,n2

)Af/2 and
−Wf2,n3

Af/2 respectively as illustrated in Figure 18. Via the negated transpose of the gradient, the same
negated weights Wf1,n1

Af/2, (Wf1,n2
+Wf2,n2

)Af/2 and Wf2,n3
Af/2 are used to map from the ~u values at
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Figure 20: The volume-weighted divergence at a yellow dot is computed from its neighboring ~u samples denoted by the green
dots and the red triangles.

nodes n1, n2 and n3 to the divergence at the red dot. Note that the sum of these weights equals Af which
is the area of the black face and consistent with the standard discretization. In the case of Figure 19(c),
half of the black face is handled in a standard fashion using the ~u value at the red triangle t, and the other
half proceeds as in Figure 19(b). The φ value at the red dot contributes to the gradients at nodes n1 and
n2 with weights −Wf1,n1

Af/2 and −Wf1,n2
Af/2 as seen in Figure 18(b). Thus via the negated transpose of

the gradient, the negated weights Wf1,n1
Af/2 and Wf1,n2

Af/2 are used to map from the ~u values at nodes
n1 and n2 to the divergence at the red dot. Similar to the previous case, the sum of these weights equals
half the area of the black face.

Next, consider the divergences at the yellow dots shown in Figure 20. In the case of Figure 20(a), the
φ value at the yellow dot contributes to the gradient on face f3 in standard fashion, and thus the ~u value
on face f3 contributes to the divergence at the yellow dot in standard fashion as well. Faces f2 and f4 are
similar except that only half the area of a regular MAC grid face is used. As seen in Figure 17(b), the φ value
at the yellow dot contributes to the gradients at nodes n1 and n2 with weights Wf1,n1

Af1
and Wf1,n2

Af1

respectively. Thus via the negated transpose of the gradient, the ~u values at nodes n1 and n2 contribute to
the divergence at the yellow dot with the same negated weights −Wf1,n1

Af1
and −Wf1,n2

Af1
which sum to

the area of face f1. In the case of Figure 20(b), three of the faces are handled as in Figure 20(a), and only
the top face differs. There considering Figure 18(d), we see that the φ value at the yellow dot contributes
to the gradients at nodes n1 and n2 with weights −Wf1,n1

Af1
/2 and −Wf1,n2

Af1
/2. Thus via the negated

transpose of the gradient, the ~u values at nodes n1 and n2 contribute to the divergence at the yellow dot
with the same negated weights Wf1,n1

Af1
/2 and Wf1,n2

Af1
/2 which sum to half the area of face f1.

5.2.3. Control Volumes of the Gradients

We have defined the volume-weighted gradient and the volume-weighted divergence which can be ex-
pressed as matrices G̃ and −G̃T respectively. Our discretization also requires defining the diagonal matrix
Ṽ which consists of the control volumes of the gradients, so that the volume-weighted Laplacian can be
defined as −G̃T (βṼ−1)G̃. Here β is a scalar value because it is spatially constant, and βṼ−1 typically
represents one over the mass. On the MAC grid, the control volumes of the gradients are illustrated by
the blue shaded regions in Figure 21. Note that each subfigure in Figure 21 corresponds to a subfigure in
Figure 16. For the gradients in the x-direction, the control volumes defined in Figures 21(a) and 21(c) cover
the entire MAC grid region as shown in Figure 22(a). Moreover, as seen in Figure 17, since the φ values at
the yellow dots depend on the nodal φ values, none of those nodal gradients involve the MAC grid degrees
of freedom, and therefore the control volumes of those nodal gradients only have volume fractions from the
tessellated Lagrangian mesh, i.e. their control volumes are computed in the same fashion as in Section 4.2.
Note that in the x-direction the tessellated Lagrangian mesh and the MAC grid are coupled by the gradients
in Figure 21(c) via the definition of the yellow dots.

For the gradients in the y-direction, the control volumes defined in Figures 21(b), 21(d) and 21(e) cover
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Figure 21: Control volume of the gradient on the MAC grid (the blue shaded region in each subfigure).
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Figure 22: Control volumes of the gradients on the entire hybrid structure. The green shaded region is covered by the tessellated
Lagrangian mesh, and the blue shaded region consists of control volumes of the MAC grid gradients. For the gradients in the
x-direction (Subfigure (a)) the blue region covers the entire MAC grid, but for the gradients in the y-direction (Subfigure (b))
the brown shaded region is not covered by the MAC grid control volumes.

the entire MAC grid region except the brown shaded regions shown in Figure 22(b). These brown regions are
lumped to the nodal control volumes of the tessellated Lagrangian mesh as shown in Figure 23. In the case
of Figure 23(a) which corresponds to the discretization shown in Figure 18(b), the y-directional gradient at
the black node has contributions from both the tessellated Lagrangian mesh and the red dots, and therefore
its control volume also has volume fractions from both the tessellated Lagrangian mesh and the MAC grid.
The red dots contribute to the nodal gradients via the definition of the brown square which then behaves in
the same fashion as the MAC grid cell centers behave in Figure 11(a). Thus, the volume fraction from the
MAC grid is computed in a similar fashion as in Figure 11(a), i.e. using WT to assign the volume of half the
dual cell around face f1 (the brown shaded region) to the black node n. This yields Wf1,nVc/2 where Vc is
the volume of a regular MAC grid cell. In the case of Figure 23(b) which corresponds to the discretization
shown in Figure 18(c), the control volume is defined similarly as in the previous case except that now there

are two brown shaded regions that assign volume to the black node yielding
∑f2

f=f1
Wf,nVc/2. In the case

of Figure 23(c) which corresponds to the discretization shown in Figure 18(d), although the brown square is
averaged from a yellow and a red dot instead of from two red dots, it still contributes to the nodal gradients
in the same fashion. Therefore, the brown shaded region also assigns volume to the black node in a similar
fashion as in Figure 23(a).

5.2.4. Numerical Results

We have reimplemented the heat equation tests from Tables 16 and 17 to test the order of accuracy on
the hybrid structure with MAC grid cells replaced by MAC grid faces. Each orthogonal set of MAC grid
faces is tested independently using the same configuration with the trapezoidal rule time integration scheme.
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Figure 23: The control volume associated with the gradient in the y-direction at the black node in each subfigure equals one
third the volume of the green shaded region plus half the volume of the brown shaded region.

Table 20: The order of accuracy for the 2D heat equation test on the x-component faces.

Grid Cells L1 Error Order L∞ Error Order
256 1.30 × 10−5 – 2.72 × 10−3 –
512 2.41 × 10−6 2.43 8.50 × 10−4 1.68
1024 4.99 × 10−7 2.27 2.11 × 10−4 2.01
2048 1.13 × 10−7 2.15 5.60 × 10−5 1.91

Tables 20 and 21 show second order accuracy on the x-component faces. The results on the y-component
and z-component faces are similar.

6. Incompressible Flow

We consider the incompressible Navier-Stokes equations as follows

∂~u

∂t
+ (~u · ∇)~u = −

1

ρ
∇p+ ν∇2~u+ ~g, (27)

∇ · ~u = 0, (28)

where ρ is the density, ~u is the velocity, p is the pressure, ν is the kinematic viscosity, and ~g is gravity. The
entire computational domain is defined using a MAC grid, and the part of the domain occupied by fluid is
discretized using a hybrid particle grid structure as described in Section 2. Velocities are stored on particles
in a colocated fashion and are also stored on MAC grid faces as is typical for MAC grid discretizations.

Equations (27) and (28) are solved with a splitting method [12]. First, we solve for advection,

~u∗ = ~un − ∆t(~un · ∇)~un,

using the method from Section 3 – specifically forward Euler on particles and second order accurate SL-
MacCormack on the MAC grid. Then we apply gravity to both the particles and the MAC grid

~u∗∗ = ~u∗ + ∆t~g,

Table 21: The order of accuracy for the 3D heat equation test on the x-component faces.

Grid Cells L1 Error Order L∞ Error Order
128 5.22 × 10−7 – 4.50 × 10−5 –
256 9.92 × 10−8 2.40 1.21 × 10−5 1.89
512 1.89 × 10−8 2.39 2.99 × 10−6 2.02
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Figure 24: Configuration of 2D droplet impact test.

and subsequently apply viscosity

~u∗∗∗ = ~u∗∗ + ∆t(ν∇2~u∗∗∗).

This equation is solved independently for each Cartesian component of ~u using a first order accurate time
discretization (equation (25)) and a second order accurate spatial discretization as explained in Section 5.2.
Note that we use backward Euler time integration as opposed to the trapezoidal rule in order to avoid
potential numerical oscillations caused by unresolved temporal modes. On the Cartesian domain boundaries,
slip boundary conditions are applied by specifying Dirichlet boundary conditions for the normal component
of velocity and zero Neumann boundary conditions for the tangential components of velocity. If viscous
interactions with domain boundaries are important, we can switch to no-slip boundary conditions. On the
free surface, zero Neumann boundary conditions are applied to all Cartesian components of ~u. Finally, we
solve for pressure as follows

∇ · (
1

ρ
∇p) =

1

∆t
∇ · ~u∗∗∗.

This equation is discretized as explained in Section 4 yielding the following analog of equation (24)

−ḠTM̄−1Ḡp̄ = −ḠT ū∗∗∗, (29)

where M̄ is the mass matrix, p̄ is the vector of ∆t-weighted pressures, and ū∗∗∗ is the vector of ~u∗∗∗ values.
On Cartesian domain boundaries, zero Neumann boundary conditions are applied. On the free surface, zero
Dirichlet boundary conditions are applied. Note that since only zero values are used for boundary conditions,
the term related to boundary conditions (analog of the b̄ term in equation (24)) vanishes in equation (29).
After solving for pressure, the velocities are updated as follows

ūn+1 = ū∗∗∗ − M̄−1Ḡp̄.

This updates velocities on the nodes of the tessellated Lagrangian mesh as well as velocities in the inte-
rior region of the MAC grid. The velocities elsewhere are updated using interpolation or extrapolation as
explained in Section 3.

6.1. Numerical Results

Consider a droplet impact problem shown in Figure 24. The computational domain is [0m, 3m] ×
[0m, 1.5m] which is partially filled with liquid where the free surface is located at y = .5m. A circular liquid
droplet of radius r = .12m is centered at [1.5m, .624m] and has an initial velocity [0ms−1,−1.372ms−1].
The liquid has parameters ρ = 1000 kgm−2 and µ = .1 kg s−1. No surface tension is used in this test.
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Figure 26 shows the free surface at t = .4 s, t = .8 s and t = 1.2 s for four grids of resolutions 300 × 150,
600× 300, 1200× 600 and 2400× 1200 respectively. Note the thin features that our solver is able to resolve.
Although we do not expect convergence under grid refinement since the flow is turbulent, we do observe
that the splashing liquid sheets roughly converge to the same location under grid refinement. In order to
more clearly illustrate the convergence behavior of our solver, we increase the viscosity of the liquid to
µ = 10 kg s−1. Figure 27 shows the free surface at t = .2 s, t = .5 s and t = .8 s.

We also simulated a dam breaking experiment corresponding to Figure 2(b) from [28]. The configuration
is shown in Figure 25. The computational domain is [0m, 1.28m] × [0m, .16m]. A rectangular reservoir
is placed at the left with a range of [0m, .38m] × [0m, .15m], and a wet bed is placed at the right with a
range of [.38m, 1.28m]× [0m, .018m]. The liquid has parameters ρ = 1000 kgm−2 and µ = .001 kg s−1. No
surface tension is used in this test. Figure 28 shows the free surface at t = .1 s, t = .2 s, t = .3 s, t = .4 s,
t = .5 s and t = .6 s for three grids of resolutions 80× 640, 160× 1280 and 320× 2560 respectively. Note the
small scale details that our solver is able to resolve and accurately track over time. Our results successfully
capture the initial mushroom shape on the wave front seen in Figure 28(a) which was first reported in [50]
and also observed in [28]. Our results also capture multiple wave breaking events in the later stages which
was reported in [28].

The above two tests have also been extended to three spatial dimensions. For the droplet impact test,
the computational domain is [0m, 3m] × [0m, 2m] × [0m, 3m] and the free surface is located at y = .5m.
A spherical liquid droplet of radius r = .12m is centered at [1.5m, .624m, 1.5m] with an initial velocity
[0ms−1,−5.372ms−1, 0ms−1]. The liquid has parameters ρ = 1000 kgm−3 and µ = .1 kgm−1 s−1. Fig-
ure 29 shows the results at t = 0 s, t = .2 s, t = .7 s and t = 1.2 s using a grid of resolution 150×100×150. For
the dam breaking test, the computational domain is [0m, 1.28m]× [0m, .16m]× [0m, .16m]. The reservoir
and wet bed are configured in the same way as shown in Figure 25 except that they are extended along the
z-axis from z = 0m to z = .16m. Figure 30 shows the results at t = 0 s, t = .1 s, t = .2 s, t = .3 s, t = .4 s,
t = .5 s and t = .6 s using a grid of resolution 64 × 512 × 64.

7. Surface Tension

We consider incompressible Navier-Stokes equations with surface tension as follows

∂~u

∂t
+ (~u · ∇)~u = −

1

ρ
∇p+

1

ρ
~f + ~g, (30)

∇ · ~u = 0, (31)

where ~f is the surface tension force density. For simplicity, the viscous term is ignored during the derivation
in this section, but adding this force back is straightforward.

We take a step-by-step constructive approach to the discretization for illustrative purposes. We start with
a fully Lagrangian representation of the fluid in Section 7.1, in light of the fact that an explicit representation
of the fluid geometry gives precise feedback to an implicit solver for surface tension. In Section 7.2, a semi-
implicit scheme is devised motivated by the method in [43], but it does not approach a steady state solution
when using large time steps. To solve this issue, a fully implicit scheme is developed in Section 7.3. This
scheme successfully achieves a steady state solution with large time step sizes, but it fails to conserve volume.

.15m

.38m .9m

.018m

Figure 25: Configuration of 2D dam breaking test.
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Figure 26: The free surface for the 2D droplet impact test with µ = .1kg s−1. Four different grids of resolutions are shown.
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Figure 27: The free surface for the 2D droplet impact test with µ = 10 kg s−1. Four different grids of resolutions are shown.
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(f) t = .6 s

Figure 28: The free surface for the 2D dam breaking test with ρ = 1000 kgm−2 and µ = .001 kg s−1. Three different grids of
resolutions are shown.
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(a) t = 0 s (b) t = .2 s

(c) t = .7 s (d) t = 1.2 s

Figure 29: 3D droplet impact test with ρ = 1000 kgm−3 and µ = .1 kgm−1 s−1.

36
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(g) t = .6 s

Figure 30: 3D dam breaking test with ρ = 1000 kgm−3 and µ = .001 kgm−1 s−1.
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We then improve upon this scheme in Section 7.4 explicitly conserving volume by replacing the divergence-
free condition with a constant-volume condition. The final scheme achieves a steady state solution and
conserves volume well. For the sake of efficiency, this scheme is then extended to the hybrid particle grid
structure in Section 7.5. In addition, we also show how one would apply these ideas to standard front
tracking and level set methods in Section 7.6.

7.1. Lagrangian Surface Tension Force

We discretize the surface tension force on a Lagrangian surface mesh since it is convenient to treat
the force implicitly with an explicit representation of the interface. In two spatial dimensions, the surface
tension force is discretized on a mesh of line segments using the method in [43], which is briefly described as
in Section 7.1.1. In three spatial dimensions, the surface tension force is discretized on a mesh of triangles
using the method described in Section 7.1.2.

7.1.1. Discretization in 2D

The free surface is approximated by a mesh S of line segments, and the surface tension force is computed
on S in a per-segment fashion as follows. Let s be a line segment on S connecting two nodes i and j. The
force applied at nodes i and j due to segment s is then

~fs,i = −~fs,j = σ~ts, (32)

where σ is the surface tension coefficient, and ~ts =
~xj−~xi

‖~xj−~xi‖
is the tangential direction of the segment s.

Equation (32) is summed over all segments to obtain the explicit part of the surface tension force.
In order to treat the surface tension force implicitly, the force derivatives are computed as follows

∂ ~fs,i

∂~xi
=
∂ ~fs,j

∂~xj
= −

∂ ~fs,j

∂~xi
= −

∂ ~fs,i

∂~xj
= −

σ

ls
~ns~n

T
s , (33)

where ls is the length of the segment s, and ns is the direction normal to the segment. Composing these
derivatives into a matrix yields

Ds = −
σ

ls

(

~ns~n
T
s −~ns~n

T
s

−~ns~n
T
s ~ns~n

T
s

)

. (34)

The matrix Ds is symmetric negative semi-definite. It can be factorized as Ds = −CT
s Cs where

Cs =

√

σ

ls

(

~nT
s −~nT

s

)

. (35)

This factorization will be useful when coupling surface tension with pressure, where the technique from [42]
will be used to form an SPD system. The Ds and Cs matrices are summed over all segments on S to form
the full matrices D and C. Since all Ds matrices are symmetric negative semi-definite, their sum D is as
well. Note that we can factorize D = −CTC due to the independent nature of the individual Cs matrices.

Ds projects out the tangential velocity components, and the resulting force acts only in the normal
direction. We refer to this model as the normal-directional implicit model. It may be desirable to have Ds

act in the tangential direction as well. If one treats ls as a constant in equation (32), the derivatives in
equation (34) become

D̂s = −
σ

ls

(

I −I

−I I

)

,

where D̂s is also symmetric negative semi-definite, and equation (35) becomes

Ĉs =

√

σ

ls

(

I −I
)

.

We refer to this as the all-directional implicit model.
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Figure 31: Discretization of the surface tension force in 3D.

7.1.2. Discretization in 3D

The free surface is approximated by a triangular mesh T . Let i be a node on T (the blue dot in Figure 31).
We define the control area of node i (denoted by Ai) to be one third of the area of its incident triangles (the
green shaded region), where each incident triangle has been divided into three equal-area pieces by cutting
along the segments connecting the centroid and the midpoints of the three edges. The net force on node i is
computed by integrating surface tension along the boundary of Ai as

~fi =

∫

∂Ai

σ~mdL,

where ~m is the outward pointing unit binormal that is perpendicular to ∂Ai and tangent to the surface.
Since ∂Ai is a set of boundary segments, this integral is transformed into a summation over the boundary
segments as

~fi =
∑

s

σ~ls, (36)

where ~ls is the length-weighted binormal of the boundary segment s. Noting that every incident triangle
contains two boundary segments, equation (36) can be further transformed into a summation over the
incident triangles as

~fi =
∑

t

σ(~lst,1
+~lst,2

) =
∑

t

~ft,i. (37)

Consider the brown triangle in Figure 31. Segments st,1 and st,2 form a planar polygon with half of the

edges ji and ik (the green shaded region inside the brown triangle), and thus ~ls1
+~ls2

= − 1
2 (~lji +~lik) where

~lji and ~lik are the length-weighted binormals of edges ji and ik. In addition, since edges ji, ik and kj form

a triangle, − 1
2 (~lji +~lik) = 1

2
~lkj . Therefore, equation (37) can be rewritten as

~ft,i =
σ

2
~lkj . (38)

Similarly, the brown triangle also contributes to the forces on nodes j and k as

~ft,j =
σ

2
~lik, ~ft,k =

σ

2
~lji. (39)

In order to treat the force implicitly, we compute the force derivatives using this per-triangle form of the
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force to obtain

∂(~ft,i, ~ft,j, ~ft,k)

∂(~xi, ~xj , ~xk)
=









−
σ~xT

kj~xkj

4At
~nt~n

T
t −

σ~xT
kj~xik

4At
~nt~n

T
t + σ

2 [~nt]× −
σ~xT

kj~xji

4At
~nt~n

T
t − σ

2 [~nt]×

−
σ~xT

ik~xkj

4At
~nt~n

T
t − σ

2 [~nt]× −
σ~xT

ik~xik

4At
~nt~n

T
t −

σ~xT
ik~xji

4At
~nt~n

T
t + σ

2 [~nt]×

−
σ~xT

ji~xkj

4At
~nt~n

T
t + σ

2 [~nt]× −
σ~xT

ji~xik

4At
~nt~n

T
t − σ

2 [~nt]× −
σ~xT

ji~xji

4At
~nt~n

T
t









,

where ~xab = ~xa − ~xb, At is the area of triangle t, ~nt is the unit normal of triangle t, and [·]× is the cross
product matrix of a vector. This matrix is indefinite due to the [~nt]× terms. To avoid this problem, we drop
all [~nt]× terms to obtain a symmetric negative semi-definite approximation Dt. This approximated matrix
can be factorized to obtain

Ct =

√

σ

4At

(

~xkj~n
T
t ~xik~n

T
t ~xji~n

T
t

)

.

The all-directional implicit model is derived as follows. Since ~lkj = ~xkj × ~nt and ~nt = 1
2At

(~xik × ~xji),
equation (38) can be rewritten as

~ft,i =
σ

2
~xkj × ~nt =

σ

4At
~xkj × (~xik × ~xji)

=
σ

4At
((~xkj · ~xji)~xik − (~xkj · ~xik)~xji)

=
σ

4At
((~xkj · ~xji)~xik + (~xkj · ~xik)~xij) .

(40)

Since (~xkj · ~xji)/2At = − cot θik,t and (~xkj · ~xik)/2At = − cot θij,t where θik,t and θij,t are the interior angles
of triangle t that are element-wise opposite edges ik and ij respectively, equation (40) can be written as

~ft,i = −
σ

2
(~xik cot θik,t + ~xij cot θij,t) . (41)

Noting that edge ij is adjacent to both triangles t and t′ (see Figure 31), we also write the force due to
triangle t′ as

~ft′,i = −
σ

2
(~xip cot θip,t′ + ~xij cot θij,t′) . (42)

Collecting the ~xij terms from equations (41) and (42) yields

~fij,i = −
σ

2
~xij(cot θij,t + cot θij,t′), (43)

where ~fij,i is the force on node i due to edge ij. Similarly, the force on node j due to edge ij is

~fij,j =
σ

2
~xij(cot θij,t + cot θij,t′) = −~fij,i. (44)

Equations (43) and (44) provide a per-edge form of the force, and they can be expressed in the matrix form
as

(

~fij,i

~fij,j

)

= −
σ(cot θij,t + cot θij,t′)

2

(

I −I

−I I

)(

~xi

~xj

)

.

Treating the cotangent terms as constants, we obtain

D̂t = −
σ(cot θij,t + cot θij,t′)

2

(

I −I

−I I

)

,
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as an approximation to the force derivatives for the all-directional implicit model. Note that D̂t may be
symmetric positive semi-definite or symmetric negative semi-definite depending on the sign of (cot θij,t +

cot θij,t′). Thus, summing D̂t over all edges may result in an indefinite matrix which is undesirable. As
proved in [7], by using an edge flipping algorithm any triangular mesh can be transformed into a special
type of mesh where the condition (cot θij,t + cot θij,t′) ≥ 0 is always true. In practice, we simply clamp the
value of (cot θij,t +cot θij,t′) to be non-negative. We found that this simple scheme works well on our surface

mesh, since our surface mesh is relatively regular. The clamped D̂t is symmetric negative semi-definite, and
it can be factorized to obtain

Ĉt =

√

σ(cot θij,t + cot θij,t′)

2

(

I −I
)

.

7.2. Semi-implicit Scheme with a Lagrangian Mesh

In this section, the particles are connected into a volumetric mesh using the meshing algorithm in Section 2
for the entire fluid region, i.e. there is no interior MAC grid region. The surface tension force is computed
on the surface of this mesh using the method from Section 7.1. In order to treat the surface tension force
implicitly, a linearized prediction is used

f̂n+1 = f̂(x̂n+1) = f̂ (x̂n + ∆tûn+1) ≈ f̂n + ∆tDûn+1, (45)

where x̂n+1 and ûn+1 are the particle positions and velocities at time tn+1, and D is the implicit matrix
constructed as in Section 7.1. A splitting method [12] is used to solve equations (30) and (31). First, an
intermediate velocity û∗ is obtained by advecting particles forward using the forward Euler method. Then,
the explicit part of the surface tension force and gravity are applied to obtain another intermediate velocity

û∗∗ = û∗ + ∆tM̂−1f̂n + ∆tĝ,

where M̂ is the mass matrix and the mass of each particle is defined using the density-weighted control
volume.

Finally, the implicit part of the surface tension force is coupled with the pressure to obtain

ûn+1 = û∗∗ − M̂−1Ĝp̂ + ∆t2M̂−1Dûn+1, (46)

ĜT ûn+1 = 0, (47)

where Ĝ is the volume-weighted gradient matrix, and p̂ is the vector of ∆t-weighted pressures. Equations (46)
and (47) are transformed into an SPD system using the technique in [42]. First, D is factorized into −CTC

as described in Section 7.1 allowing equation (46) to be rewritten as

ûn+1 = û∗∗ − M̂−1Ĝp̂ + ∆t2M̂−1CTCûn+1.

Rewriting this equation using block matrices yields

ûn+1 = û∗∗ − M̂−1

(

ĜT

∆tC

)T (
p̂

∆tCûn+1

)

,

which can be written concisely as

ûn+1 = û∗∗ − M̂−1KT ẑ, (48)

where

K =

(

ĜT

∆tC

)

, ẑ =

(

p̂

∆tCûn+1

)

.
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Figure 32: Stability tests on an oscillating ellipse. The x axis indicates the grid cell size (Subfigure (a)) or the average mesh
element size (Subfigures (b), (c) and (d)), with more refined simulations towards the right. The y axis indicates the size of ∆t,
with smaller ∆t towards the top. A green square indicates a stable simulation, and a red circle indicates an unstable simulation.

Left multiplying equation (48) by K and rearranging terms yields

Kûn+1 + KM̂−1KT ẑ = Kû∗∗. (49)

Noting that

Kûn+1 =

(

ĜT ûn+1

∆tCûn+1

)

=

(

0

∆tCûn+1

)

=

(

0 0

0 I

)(

p̂

∆tCûn+1

)

= Pẑ,

where

P =

(

0 0

0 I

)

,

equation (49) can then be rewritten as

(P + KM̂−1KT )ẑ = Kû∗∗. (50)

Equation (50) is an SPD system, and it is solved using the conjugate gradient method to obtain ẑ, which is
subsequently substituted into equation (48) to obtain the new velocity ûn+1. Note that if the viscous term
is present, it can be coupled into equation (50) as shown in [42].

7.2.1. Stability Tests

An oscillating ellipse problem is used to test stability. The computational domain is [−.005m, .005m]×
[−.005m, .005m]. An elliptic liquid droplet is centered at the origin with an interface described by (x

r )2 +
( y

r/α )2 = 1 where r = .0045m is the radius along the longer axis, and r/α is the radius along the shorter

axis where α ≥ 1 controls the ratio between the longer and shorter axes. In all our tests, α = 2.5 is used.
The liquid has parameters ρ = 1000 kgm−2, µ = 1.138 × 10−3 kg s−1 and σ = .0728 kgms−2. No gravity is
used. The droplet has zero initial velocity and is only driven by the surface tension force.

The semi-implicit scheme with the normal-directional model and that with the all-directional model are
both tested. For comparison, two explicit schemes are also tested. The first explicit scheme uses the fully
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(a) all-directional semi-
implicit scheme

(b) fully implicit scheme (c) fully implicit volume con-
serving scheme

(d) fully implicit volume con-
serving scheme with the hy-
brid particle grid structure

Figure 33: The free surface of the oscillating ellipse test. The blue line shows the initial free surface, and the black line shows
the free surface after a single rather large time step ∆t = .25 s. Subfigure (a) uses the all-directional semi-implicit scheme with
a Lagrangian mesh, where the droplet does not achieve a steady state solution. Subfigure (b) uses the fully implicit scheme
with a Lagrangian mesh, where the droplet achieves a steady state solution but gains 69.64% of its initial volume. Subfigure (c)
uses the fully implicit volume conserving scheme with a Lagrangian mesh, where the droplet achieves a steady state solution
and the relative volume error is only .07%. Subfigure (d) uses the fully implicit volume conserving scheme with the hybrid
particle grid structure, where the droplet achieves a steady state solution and the relative volume error is only .088%.

Lagrangian representation described in this section, and it treats the surface tension force explicitly by simply
setting the implicit matrix D = 0. The second explicit scheme uses a level set based approach from [30]
where the surface tension force is applied explicitly as a pressure jump.

Figure 32 shows the stability results with various mesh resolutions and time step sizes. A simulation is
noted unstable if the free surface reaches the domain boundary indicating a severely distorted geometry. The
two explicit schemes have similar stability properties. The semi-implicit scheme with the normal-directional
model significantly improves stability but still suffers from instability with finer mesh resolutions and larger
time step sizes. The semi-implicit scheme with the all-directional model remains stable on all mesh resolutions
and time step sizes. However, this scheme does not approach a steady state solution when using large time
steps. See Figure 33(a) where a simulation with a rather large time step of ∆t = .25 s is run. This is because
a linearized model is used to predict the surface tension force, which diverges from the actual force as ∆t
grows.

7.3. Fully Implicit Scheme with a Lagrangian Mesh

We start with the Lagrangian form of equation (30)

D~u

Dt
= −

1

ρ
∇p+

1

ρ
~f + ~g. (51)

The temporal discretization of equations (51) and (31) using the backward Euler method is

~un+1 − ~un = −
∆t

ρ
∇pn+1 +

∆t

ρ
~fn+1 + ∆t~g,

∇ · ~un+1 = 0.

The spatial discretization is the same as in Section 7.2 but with all forces and matrices evaluated at the time
tn+1, which results in

M̂n+1(ûn+1 − ûn) + Ĝn+1p̂n+1 − ∆tf̂n+1 − ∆tM̂n+1ĝ = 0, (52)

(Ĝn+1)T ûn+1 = 0, (53)

which can be compactly written as F(w) = 0 where

w =

(

ûn+1

p̂n+1

)

.
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An iterative approach is used to solve this nonlinear system. We begin with an initial guess ûn+1
0 = 0,

p̂n+1
0 = 0 and x̂n+1

0 = x̂n where the subscript indicates the iteration index. We drop the superscript n+ 1
in the remainder of this section where no confusion will result. The Newton-Raphson method is used

Jk∆w = −F(wk), (54)

wk+1 = wk + ∆w, (55)

where J is the Jacobian of F. The exact Jacobian is difficult to compute since it requires taking derivatives
of M̂ and Ĝ. To avoid this difficulty, an approximated Jacobian is computed by treating M̂ and Ĝ as
constants for each iteration. Note that if the viscous term is present, its matrix will also be treated as a
constant in this approximated Jacobian. To compute the Jacobian of −∆tf̂n+1, we use the approximation
f̂n+1 ≈ f̂n +∆tDûn+1. The derivative with respect to ûn+1 is then computed as −∆t2D, and the derivative
with respect to p̂n+1 is zero. We use the all-directional implicit model to construct the implicit matrix D,
because the extra damping effects provided by this model are desirable for stabilizing the Newton-Raphson
iterations. The approximated Jacobian can then be written as

Jk =

(

M̂k − ∆t2Dk Ĝk

ĜT
k 0

)

,

where we stress that Jk is updated with new values of M̂k, Ĝk and Dk at each iteration.
To solve equations (54) and (55), they are first transformed into an SPD system following a derivation

similar to that in Section 7.2. Substituting the definitions of J and F into equation (54) yields

M̂k∆û + Ĝk∆p̂− ∆t2Dk∆û = −M̂k(ûk − ûn) − Ĝkp̂k + ∆tf̂k + ∆tM̂kĝ, (56)

ĜT
k ∆û = −ĜT

k ûk, (57)

and substituting the definition of w into equation (55) yields

ûk+1 = ûk + ∆û, (58)

p̂k+1 = p̂k + ∆p̂. (59)

Equation (56) is combined with equation (59) to eliminate ∆p̂ as

M̂k∆û − ∆t2Dk∆û = −M̂k(ûk − ûn) − Ĝkp̂k+1 + ∆tf̂k + ∆tM̂kĝ. (60)

Left multiplying by M̂−1
k on both sides of equation (60) and rearranging terms yields

∆û = û∗ − M̂−1
k Ĝkp̂k+1 + ∆t2M̂−1

k Dk∆û, (61)

where

û∗ = ûn − ûk + ∆tM̂−1
k f̂k + ∆tĝ. (62)

Substituting the factorization Dk = −CT
k Ck into equation (61) yields

∆û = û∗ − M̂−1
k Ĝkp̂k+1 − ∆t2M̂−1

k CT
k Ck∆û.

Rewriting this using block matrices yields

∆û = û∗ − M̂−1
k

(

ĜT
k

∆tCk

)T (
p̂k+1

Ck∆û

)

,

which can be written compactly as

∆û = û∗ − M̂−1
k KT

k ẑ, (63)
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where

Kk =

(

ĜT
k

∆tCk

)

, ẑ =

(

p̂k+1

∆tCk∆û

)

. (64)

Left multiplying by Kk on both sides of equation (63) and combining it with equation (57) produces an SPD
system

(P + KkM̂
−1
k KT

k )ẑ = Kkû
∗ +

(

GT
k ûk

0

)

. (65)

Note that if the viscous term is present, it can be coupled into equation (65) as shown in [42]. Equation (65) is
solved using the conjugate gradient method to obtain ẑ, which is subsequently substituted into equation (63)
to obtain ∆û. The new prediction of the velocity ûk+1 is then updated using equation (58).

At this point, we have obtained ûk+1 at each particle location x̂k. The next step is to move particles
from their current location x̂k to their new predicted locations x̂k+1 carrying over ûk+1 and ûn with them.
The predicted locations at two consecutive iterations k and k + 1 are respectively

x̂k = x̂n + ∆tûk, (66)

x̂k+1 = x̂n + ∆tûk+1. (67)

Subtracting these two equations yields

x̂k+1 = x̂k + ∆t∆û. (68)

With a large update ∆t∆û, some mesh elements may be inverted after solving equation (68). This results in
an invalid discretization. To avoid this problem, ∆û is scaled down by half if any mesh elements are inverted,
and this process is repeated until no mesh elements are inverted. Equation (58) is updated accordingly.

After moving particles to x̂k+1, we remesh to maintain a good quality mesh, and recompute M̂, Ĝ and D

completing one iteration of our nonlinear solver.
The oscillating ellipse from Section 7.2.1 is used to test stability. The proposed scheme achieves a steady

state solution after one time step and remains stable for all tested selections of ∆x and ∆t in Figure 32.
However, the droplet gains 69.64% of its original volume as shown in Figure 33(b).

7.4. Fully Implicit Volume Conserving Scheme with a Lagrangian Mesh

Starting with the integral form of the continuity equation and dividing by the constant density results in
the typical incompressible flow equation for conservation of volume

DV

Dt
= −

∫

V

∇ · ~u dV. (69)

Letting V be the particle control volume and writing equation (69) for each particle results in

Dv̂

Dt
= ĜT û, (70)

where v̂ is the vector of particle control volumes defined on the Lagrangian mesh and −ĜT is the volume-
weighted divergence operator. The temporal discretization of equation (70) using the backward Euler method
is

1

∆t
(v̂n+1 − v̂n) = (Ĝn+1)T ûn+1. (71)

Comparing this with the discretization in Section 7.3, we see that one can replace equation (53) with a
discrete constraint on the volume, after which equation (65) becomes

(P + KkM̂
−1
k KT

k )ẑ = Kkû
∗ +

(

1
∆t (v̂k − v̂n)

0

)

. (72)
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The nonlinear solver then proceeds as follows. We start with an initial guess û0 = 0, p̂0 = 0, x̂0 = x̂n and
v̂0 = v̂n. At each iteration, the current control volume v̂k is computed using x̂k and the mesh topology. We
then solve equations (72) and (63) to obtain p̂k+1 and ∆û. Note that the current volume error is fed back
into the system at every iteration. ∆û is still scaled to maintain a valid mesh as discussed in Section 7.3,
which is then used in equations (58) and (68) to obtain ûk+1 and x̂k+1. Finally, the mesh is regenerated
from x̂k+1 to maintain a good quality mesh.

An important consideration when evaluating the right hand side of equation (72) is that the remeshing
done after each iteration changes the particle control volumes v̂. One can address this using a Lagrangian
plus remap method (see e.g. [6] and the references therein), but this is overkill for incompressible flow
especially since we only use the volume temporarily for stability in our iterative approach to surface tension.
Thus, we take a simple local diffusion approach instead.

To identify the volume errors caused by topology changes, we rewind the new mesh at the (k + 1)-th
iteration back to the x̂k locations and denote this as mesh T new noting that it differs from the mesh T old

at the k-th iteration only in topology. For each particle i, we compute its control volumes from the mesh
geometry on both mesh T old and T new to obtain volumes V old

i and V new
i . Particle i takes place in the diffusion

process only if |V new
i −V old

i | is greater than a tolerance ǫ, and once |V new
i −V old

i | < ǫ we remove that particle
from the diffusion process. Iterations are done in a Gauss-Seidel fashion as follows. For each particle i, we
compute the total combined volume for it and all of its logically connected neighbors in its one ring on mesh
T new and denote this as V new

C . V old
C is calculated in the same exact fashion using V old

i , stressing that the
one ring according to mesh T new is used not the one ring according to T old. The diffusion redistributes the
total volume V old

C to the particle i and its one ring neighbors j based on the ratio V new
j /V new

C , i.e. V old
j is

assigned the value V old
C (V new

j /V new
C ). Note that V new

j never changes as we iterate, V new
C changes only when

a particle has been removed from the diffusion process, and V old
C is updated based on the new values of V old

j .
This diffusion process typically takes around 10 to 20 iterations.

The real goal here is to update v̂n in equation (72) based on the changes of mesh topology, and the
change between v̂new and v̂old is only used as a guide for how that should be accomplished. v̂n is computed
at the beginning of the iterative process based on mesh topology, and then modified every time we proceed
from iteration k to iteration k + 1 using remeshing. It is modified in parallel with the diffusion process
described above where every time V old

C is redistributed to V old
j based on the weights V new

j /V new
C we likewise

redistribute V n
C to V n

j based on the same weights. The iterative procedure, stopping criteria, etc. are all as
previously described, we just update v̂n in parallel. At the end of the diffusion process, only v̂n is needed
by the next iteration in equation (72), and both v̂old and v̂new are discarded.

Remeshing occasionally requires new particles, and we add those to the new mesh in the same way as
in Section 2. These new particles are rewound in the same fashion as the others when computing the mesh
T new. Their control volumes on mesh T new are properly defined, but they lack of values for V old and V n.
We compute these as follows. If a new particle was inserted at the midpoint of two old particles, the sum of
the old control volumes of the two old particles is evenly divided into three parts and assigned to each of the
three particles. If two old particles were merged into a new particle, the sum of their old control volumes is
assigned to the new particle. After this initialization, the iterative diffusion proceeds as usual.

The oscillating ellipse from Section 7.2.1 is used to test stability. The proposed scheme achieves a steady
state solution after one time step and remains stable for all tested selections of ∆x and ∆t in Figure 32. In
addition, the relative volume error is only −.07% as shown in Figure 33(c).

7.5. Fully Implicit Volume Conserving Scheme with a Hybrid Particle Grid Structure

The spatial discretization follows that in Section 6, and all vectors and matrices are redefined accordingly.
û now consists of velocities on both particles and MAC grid faces, p̂ consists of pressures on both particles
and MAC grid cell centers, and v̂ consists of a hybrid set of particle control volumes and MAC grid cell control
volumes. The volume-weighted divergence −ĜT and the volume-weighted gradient Ĝ are now defined on
the hybrid structure as in Section 4. The surface tension force and its implicit matrix D are still computed
using the method in Section 7.1. The nonlinear solver takes the same steps as in Section 7.4 but with the
following changes.
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(a) The hybrid structure T old at the old
iteration.

(b) The hybrid structure Tnew rewound
from the new iteration.

(c) The auxiliary mesh T aux for diffu-
sion.

Figure 34: Topology changes of the hybrid structure between two iterations.

Equation (68) is changed to an advection operator on the hybrid particle grid structure. Recall that
when solving equation (68), ûk+1 and ûn are carried over from x̂k to x̂k+1 along with the particles. So with
the hybrid particle grid structure, they are advected from the hybrid structure at the k-th iteration to the
hybrid structure at the (k + 1)-th iteration using the advection method from Section 3, where ∆û is used
as the background velocity. Repeatedly using ∆û for advection increases interpolation errors on the MAC
grid, and although this could be avoided we found it unnecessary since the MAC grid cells are not so close
to the interface where the surface tension forces are prevalent.

The volume conservation scheme requires modification in order to handle the Eulerian degrees of freedom,
since the interior MAC grid cells and the grid nodes of buffer cells are fixed in space and cannot be explicitly
tracked in a Lagrangian fashion. To avoid this problem, we lump the entire interior MAC grid volume (the
red cells in Figure 34(a)), the grid nodes of the buffer cells (the blue dots) and the one ring of Lagrangian
mesh around the buffer cells (the red dots) into a single control volume VP where P indicates a composite
set of degrees of freedom. Note that VP contains the entire region inside the yellow lines in Figure 34(a) as
well as the portion of the blue triangles that are lumped into the red nodes in the standard fashion. At the
beginning of the time step, v̂n is computed as usual noting that the MAC grid cell degrees of freedom have
their control volumes defined as in Section 4.1, and then V n

P is computed. At each iteration, v̂k is computed
for all degrees of freedom (including those in P ) using the current hybrid structure. Then for each degree of
freedom i ∈ P we modify v̂n via V n

P ([v̂k]i/
∑

j∈P [v̂k]j) where [v̂k]i is the i-th entry of v̂k. This redistributes
the volume of V n

P to the degrees of freedom in P according to their current volume fractions in the k-th
iteration. v̂k and the modified v̂n are then used on the right hand side of equation (72) to correct volume
errors.

In order to handle the volume errors due to topology changes of the hybrid particle grid structure, we
modify the diffusion process from Section 7.4 as follows. We rewind the new tessellated Lagrangian mesh
at the (k + 1)-th iteration back to the x̂k locations and denote this as T new (Figure 34(b)) noting that it
not only differs from the old hybrid structure T old in topology but may also have a different set P . To
distinguish these two different sets of P we denote them as P old and P new, and we bear this difference in
mind when initializing control volumes. On T old and T new, first V old

i , V old
P , V new

i and V new
P are computed

as usual. Then if a particle was untessellated on T old and becomes tessellated on T new, we estimate its V old

value as V old
P (V new

i /V new
P ), and subtract this value from V old

P if the particle is not in P new. If a particle was
tessellated on T old and becomes untessellated on T new, its V old value is added to V old

P if it was not already
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in P old. If a particle is in P new but was not in P old, its V old value is added to V old
P . If a particle was in

P old but is not in P new, its V old value is subtracted from V old
P . v̂n and V n

P are adjusted in the same fashion
as v̂old and V old

P . An auxiliary mesh T aux is created from T new for the diffusion process (see Figure 34(c)),
where P new is represented by a single degree of freedom (the yellow dot). The yellow dot is connected to
the green particles so that the green particles become the one ring neighbors of the yellow dot recalling
that this connectivity information is used in the diffusion process to find a local set of neighbors for volume
redistribution.

The oscillating ellipse from Section 7.2.1 is used to test stability. The proposed scheme achieves a steady
state solution after one time step and remains stable for all tested selections of ∆x and ∆t in Figure 32. In
addition, the relative volume error is −.088% as shown in Figure 33(d).

7.6. Fully Implicit Volume Conserving Scheme with a MAC Grid

The spatial discretization follows that in [43] with velocities and pressures defined on a regular MAC
grid. Control volumes, the volume-weighted gradient and the volume-weighted divergence are defined using
a cut-cell discretization modified from [43] as described in Section 7.6.1 below. The free surface is represented
either by a standard front tracking method [59, 56] or by the particle level set method [20] where a mesh
of line segments is extracted from the level set using the third order contouring method from [43]. Both
approaches maintain an explicit representation of the surface mesh, and the surface tension force and its
implicit matrix D are computed on this surface mesh using the method from Section 7.1. The nonlinear
solver takes the same steps as in Section 7.4 but with the following modifications.

Since the surface tension force and the pressure force are now discretized on different degrees of freedom,
we couple them by interpolating velocities from the MAC grid to the surface mesh using an interpolation
matrix H and by distributing forces from the surface mesh back to the MAC grid using HT . Equation (56)
is modified accordingly to use this coupling scheme as

M̂k∆û + Ĝk∆p̂ − ∆t2HT
k DkHk∆û = −M̂k(ûk − ûn) − Ĝkp̂k + ∆tHT

k f̂k + ∆tM̂kĝ.

Propagating this change modifies equations (62) and (64) to

û∗ = ûn − ûk + ∆tM̂−1
k HT

k f̂k + ∆tĝ, Kk =

(

ĜT
k

∆tCkHk

)

, ẑ =

(

p̂k+1

∆tCkHk∆û

)

,

which are then used when solving equations (72) and (63).
Equation (68) is changed to an advection operator on the MAC grid. Similar to the discussion in

Section 7.5, velocities ûk+1 and ûn are advected from the k-th iteration to the (k + 1)-th iteration with ∆û

as the background velocity where third order accurate Hamilton-Jacobi ENO [39] and third order accurate
TVD Runge Kutta [48] are used. For the front tracking method, the surface mesh is advected using the
forward Euler method. For the particle level set method, the marker particles and the level set are separately
advected using a third order accurate TVD Runge-Kutta method [30, 48], and the spatial derivatives are
calculated with a fifth order accurate Hamilton-Jacobi WENO scheme [29].

At the beginning of each time step, we compute the total volume of the fluid V n enclosed by the surface
mesh. At each iteration, we also compute the total volume V . One can think of V n and V as V n

P and VP

except that now P represents all degrees of freedom. v̂n and v̂k are obtained by redistributing V n and V
to the MAC grid cells using the weights Vc/(

∑

c Vc) where Vc is the cell volume, i.e. Vc is 0, ∆x2 or the cut
cell volume. Note that this global volume conservation scheme is similar in spirit to [52, 53].

The update ∆û is scaled differently in order to stabilize the nonlinear iteration. As discussed in [43], the
HT matrix is constructed so that it only transfers the normal components of the surface tension force to
the MAC grid in order to reduce parasitic currents. And via its transpose, the H matrix only interpolates
the normal components of the velocity to the surface mesh. This prevents the damping of the tangential
components of the velocity making the all-directional implicit model behave like a normal-directional model
and thus become less stable. Thus, to stabilize the iterations we scale down the update ∆û using a CFL
condition ‖∆t∆û‖ ≤ α∆x where α is the CFL number.
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(a) Original cut-cell discretization (b) Modified cut-cell discretization

Figure 35: Cut-cell discretization. The black dotted lines are the surface mesh, and the blue dashed lines are the faces
constructed for each cut cell. The red arrow is the surface tension force, and the green arrows are the normal directions of the
faces.

7.6.1. Modifications to [43]

We modify the cut-cell discretization from [43] in order to handle sharp features on the surface mesh.
In [43], a face is constructed for each cut cell by connecting the two intersection points cut by the surface
mesh (the blue dashed lines in Figure 35(a)), and then the surface tension force (the red arrow) is projected
perpendicular to these faces using HT . However, the face normals may significantly differ from the force
direction for sharp features, and thus a majority of the force can be lost during projection. To avoid this
problem, we instead construct a face for each node of the surface mesh by connecting the two midpoints of
its two incident segments (the blue dashed lines in Figure 35(b)), so that the face normal is now parallel to
the area-weighted normal of its corresponding node giving a better approximation to the force direction.

We modify the method proposed in [43] to better conserve momentum. First, we compute the total
projected force by summing over all faces that are coupled with surface tension as

~ftotal =
∑

c

fc~nc,

where fc is the projected value on the coupling face c, and ~nc is the outward pointing normal. In order to
enforce a zero total force, we apply a correction force gc on each coupling face so that

∑

c

(fc + gc)~nc = 0.

Rearranging terms yields

∑

c

gc~nc =
∑

c

−fc~nc = −~ftotal.

This is an underdetermined system which can be compactly written as

Ng = −~ftotal, (73)

where the columns of N are the ~nc vectors, and g is a vector of gc. To obtain the minimum-norm solution,
the QR factorization is used to obtain NT = QR. Since NT only has two columns, this is done by a single
iteration of the Gram-Schmidt process. Then equation (73) is solved as

RTQTg = −~ftotal,

g = −QR−T ~ftotal.
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(a) front tracking (b) particle level set

Figure 36: The free surface of the oscillating ellipse test with ∆t = .25 s. The fully implicit volume conserving scheme on the
MAC grid is used. The blue line shows the initial free surface, and the black line shows the free surface after a single time step.
Subfigure (a) shows the result using the front tracking method, and Subfigure (b) shows the result using the particle level set
method.

The gc values can then be added to the coupling faces to exactly conserve momentum. However, we only
use this technique on the explicit part of the surface tension force. The implicit part of the force is tightly
coupled with the pressure, and changing it either breaks the symmetry of the system or breaks the balance
between the surface tension force and the pressure force. Fortunately, the explicit part of the force is usually
much stronger than the implicit part, and it accounts for the majority of momentum loss.

7.6.2. Stability Tests

The oscillating ellipse from Section 7.2.1 is used to test stability. The proposed scheme with both
standard front tracking and the particle level set method achieves a steady state solution after one time
step and remains stable for all tested selections of ∆x and ∆t in Figure 32. In addition, the relative volume
error with the standard front tracking method is .023% as shown in Figure 36(a), and that with the level set
method is −.042% as shown in Figure 36(b).

7.7. Numerical Results

Consider an oscillating circle test from [43] with a computational domain [−2m, 2m]× [−2m, 2m]. The
initial droplet interface is a deformed circle centered at the origin whose perturbed radius is described by
R(θ) = a + ǫ cos(nθ) where θ runs between 0 and 2π. The linearized analytic solution of the radius in the

absence of viscosity (see [33]) is R(θ, t) = a+ ǫ cos(nθ) cos(ωt) where ω2 = σ(n2−1)n
ρa3 . We use the parameters

a = 1m, ǫ = .05m and n = 2. The liquid has parameters ρ = 1 kgm−2 and σ = 1 kg s−2. The fully
implicit volume conserving schemes from Sections 7.4, 7.5 and 7.6 are tested. Table 22 shows the relative
error between succeeding resolutions for the computed location of R(0, t), where the L1 error is averaged
from 100 sample points in time with an interval .01 s and the L∞ error is the maximum of those. In order to
show that the simulation reasonably captures the correct amplitude and frequency of the oscillating circle,
Figure 37 compares the simulated R(0, t) locations with the analytic solution.

Consider a rising bubble example modified from [43] with a computational domain [0m, 1m]× [0m, 2m]
filled with liquid. A circular vacuum bubble is given an initial radius of .2m and is centered at [.5m, .5m].
The liquid has parameters ρ = 20 kgm−2, µ = 1 kg s−1 and σ = .0728 kg s−2. The semi-implicit scheme
from [43], the semi-implicit scheme from Section 7.2 and the fully implicit volume conserving schemes from
Sections 7.4 and 7.5 are tested. The scheme from [43] remains stable up to ∆t = .03 s for both particle
level set and front tracking methods, the scheme from Section 7.2 remains stable up to ∆t = .07 s, and the
schemes from Sections 7.4 and 7.5 both remain stable up to ∆t = .25 s. With ∆t > .25 s the nonlinear
solvers from Sections 7.4 and 7.5 fail to converge, possibly due to the fact that an approximate Jacobian is
used.

To test the ability of our solver to handle complex scenarios, we implement contact angle handling.
When the surface mesh is in contact with the boundary of the computational domain, we do not use the
mesh elements whose nodes are all on the boundary of the computational domain to compute the surface
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Table 22: The order of accuracy for the oscillating circle test using the fully implicit volume conserving scheme with various
spatial discretizations.

Lagrangian mesh
∆x L1 Error Order L∞ Error Order
.064 – – – –
.032 6.26 × 10−5 – 6.45 × 10−4 –
.016 3.53 × 10−5 .83 3.59 × 10−4 .85
.008 1.78 × 10−5 .98 1.72 × 10−4 1.06

Hybrid particle grid structure
∆x L1 Error Order L∞ Error Order
.064 – – – –
.032 6.44 × 10−5 – 6.84 × 10−4 –
.016 3.98 × 10−5 .69 3.99 × 10−4 .78
.008 1.98 × 10−5 1.01 1.87 × 10−4 1.09

Front tracking
∆x L1 Error Order L∞ Error Order
.064 – – – –
.032 1.02 × 10−3 – 2.31 × 10−3 –
.016 5.40 × 10−4 .91 1.12 × 10−3 1.05
.008 2.41 × 10−4 1.17 5.32 × 10−4 1.07

Particle level set
∆x L1 Error Order L∞ Error Order
.064 – – – –
.032 1.73 × 10−3 – 3.81 × 10−3 –
.016 8.61 × 10−4 1.00 1.92 × 10−3 .99
.008 4.56 × 10−4 .92 9.43 × 10−4 1.03

tension force, and instead enforce a contact angle boundary condition as follows. In two spatial dimensions,
the fluid surface at the contact line is virtually extended into the wall along a direction ~tc (the green line
in Figure 38(a)) so that the angle between the extended surface and the wall equals the contact angle θ.

This extended surface then applies a force to the particle on the contact line as ~fc = σ~tc. In three spatial
dimensions, the contact line consists of a set of line segments, and from each segment s the fluid surface
is virtually extended into the wall along a direction ~tc perpendicular to the segment s (the green plane in
Figure 38(b)) so that the angle between the extended surface and the wall equals the contact angle θ. This

extended surface then applies a force to segment s as ~fc = σls~tc, where ls is the length of the segment s.
Half of this force is then applied to each of the two particles connected by segment s. We project the total
force at each particle on the contact line perpendicular to the wall normal. For the implicit forces, these
projections are composed into a matrix P and then used to modify the implicit matrix D into PDP. Note
that the second P is used to maintain symmetry since P = PT , and it does not change the behavior of the
implicit matrix since it merely projects off the zero normal velocity component on the wall. The C matrix
is accordingly modified to obtain CP.

Consider a droplet impact example modified from Section 6. The computational domain is [0m, .2m]×
[0m, .15m] which is partially filled with liquid where the free surface is located at y = .05m. A circular liquid
droplet of radius r = .012m is centered at [.1m, .0624m] and has an initial velocity [0ms−1,−8ms−1]. The
liquid has parameters ρ = 1000 kgm−2 and σ = 1 kg s−2. The contact angle is set to be 90◦ on all walls.
Figure 39 shows the free surface using the fully implicit volume conserving scheme from Section 7.5 with a
grid of resolution 400 × 300. Note the small details our solver is able to resolve and track stably over time.

We extended the oscillating ellipse problem from Section 7.2.1 to three spatial dimensions. The com-
putational domain is [−.005m, .005m]× [−.005m, .005m]× [−.005m, .005m]. A liquid droplet is initially
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Figure 37: The simulated R(0, t) locations compared with the analytic solution for the oscillating circle test. ǫ = .05m and a
spatial resolution of ∆x = .008m are used in all schemes.

Table 23: The breakup time for the 3D Rayleigh capillary instability test.

Grid Cells Breakup Time Difference Order
32 1.14 × 10−5 s – –
64 1.11 × 10−5 s 3 × 10−7 s –
128 1.10 × 10−5 s 1 × 10−7 s 1.58

centered at the origin with an ellipsoid interface described by (x
r )2 + ( y

r/α )2 + ( z
r/α )2 = 1 where r = .0045m

is the radius along the x axis, and r/α is the radius along the y and z axes where α = 2.5. The liquid has
parameters ρ = 1000 kgm−3, µ = 1.138 × 10−3 kgm−1 s−1 and σ = .0728 kg s−2. The fully implicit volume
conserving scheme from Section 7.5 is used with a grid of resolution 32 × 32 × 32. As shown in Figure 40,
the droplet achieves a steady state solution after a very large time step ∆t = .25 s, and the relative volume
error is only .014%.

Consider the Rayleigh capillary instability test taken from [54]. The computational domain is [−1.5 ×
10−5m, 1.5 × 10−5m] × [−1.5 × 10−5m, 1.5 × 10−5m] × [0m, 3 × 10−5m]. A slightly perturbed cylindrical
column of liquid has its initial interface described as R(z) = R0 + ǫ cos(2πz/λ) where R0 = 6.52 × 10−6m,
ǫ = 1.3×10−6m and λ = 6×10−5m. The liquid has parameters ρ = 103 kgm−3, µ = 1.138×10−3 kgm−1 s−1

and σ = .0728 kgms−2. No gravity is used. The liquid has zero initial velocity and is driven to break up
into droplets by surface tension. The hybrid particle grid structure and the fully implicit volume conserving
scheme from Section 7.5 are used with three grids of resolutions 323, 643 and 1283. Figure 41 shows the
results with the grid of resolution 1283, and Table 23 shows the convergence of the breakup time under grid
refinement.

In order to test our volume conserving scheme in complex scenarios, we modified the above Rayleigh
capillary instability test by extending the computational domain to [−1.5× 10−5m, 1.5× 10−5m]× [−1.5×
10−5m, 1.5 × 10−5m] × [0m, 24 × 10−5m] so that the liquid column is lengthened and will break up into
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Figure 38: Contact angle boundary condition. The fluid surface at the contact line is virtually extended into the wall (the green
line in Subfigure (a) or the green plane in Subfigure (b)) so that the angle between the extended surface and the wall equals
the contact angle θ.

(a) t = .034 s (b) t = .063 s (c) t = .125 s

(d) t = .188 s (e) t = .313 s (f) t = .375 s

Figure 39: The free surface for the droplet impact test with surface tension.
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(a) t = 0 s (b) t = .25 s

Figure 40: The 3D oscillating ellipsoid test with ∆t = .25 s. The fully implicit volume conserving scheme on the hybrid particle
MAC grid structure is used. Subfigure (a) shows the initial geometry. Subfigure (b) shows the geometry after one time step
where the relative volume error is .014%.

(a) t = 0 s (b) t = 9.3 × 10−6 s (c) t = 1.1 × 10−5 s (d) t = 1.2 × 10−5 s

Figure 41: The 3D Rayleigh capillary instability test.
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many droplets with various sizes. The same formula for describing the initial interface and the same physical
parameters are used. The hybrid particle grid structure and the fully implicit volume conserving scheme from
Section 7.5 are used with a grid of resolution 32× 32× 256. As seen in Figure 42, the liquid column breaks
into five big droplets and four small droplets. From the initial formation of all droplets (Figure 42(c)) to the
end of the simulation (Figure 42(d)), each droplet only changes at most .1% of its volume. Note that the
five big droplets each contain a separate interior MAC grid region, but our volume conserving scheme only
conserves the total volume of all MAC grid regions. This potentially allows big droplets exchange volumes
and thus fail to conserve their volumes individually. Whereas it is straightforward to track and correct the
volume of each individual MAC grid region, it is not clear how to partition the volume when droplets are
pinching due to the complication of remeshing. However, in this example and other complex examples in
this section, this problem is negligible since the ratio between the volume error and the total volume of a
large bulk of liquid is very small.

Consider a droplet dripping example with a computational domain [0m, .1m]× [0m, .15m]× [0m, .1m].
The droplet is initially located at the center of the ceiling and has a hemispherical shape with a radius .02m.
The liquid has parameters ρ = 1000 kgm−2 and σ = 1.25 kg s−2. No viscosity is used. The contact angle
on the ceiling is set to be 45◦, and the contact angle on the ground is set to be 135◦. Figure 43 shows the
free surface using the hybrid particle grid structure and the fully implicit volume conserving scheme from
Section 7.5 with a grid of resolution 64× 96× 64. As seen in the figure, the droplet forms a thread of liquid
when dripping down from the ceiling, which then breaks up and eventually forms two droplets achieving
their equilibrium states on the ceiling and on the ground respectively with the correct contact angles.

We modified the droplet impact test in three spatial dimensions from Section 6. The computational
domain is [0m, .3m]× [0m, .2m]× [0m, .3m] and the free surface of a pool of liquid is located at y = .05m.
A spherical liquid droplet of radius r = .012m is centered at [.15m, .0624m, .15m] with an initial velocity
[0ms−1,−10ms−1, 0ms−1]. The liquid has parameters ρ = 1000 kgm−3 and σ = .0728 kg s−2. The
fully implicit volume conserving scheme from Section 7.5 is used with a grid of resolution 150 × 100 × 150.
Figures 44 and 45 show the results.

Remark: Note that the update ∆û is subject to a restriction limiting the sizes of nonlinear iterations.
However, this restriction is only O(∆x) which is less strict than the O(∆x3/2) restriction due to surface
tension. Moreover, unlike the oscillating ellipsoid example as shown in Figure 40 where the high-curvature
features of the droplet need to span a considerable number of grid cells before converging to a steady state
solution, in many real world problems of interest such as that shown in Figures 44 and 45 the highest
curvature features typically have sizes on the order of a grid cell, and as a result only a couple of nonlinear
iterations are actually needed.

8. Summary

We designed a new spatial discretization for simulating the incompressible Navier-Stokes equations with
a free surface by hybridizing a Lagrangian mesh with the MAC grid so that the details near the interface are
well resolved by particles while the majority of the interior fluid region is efficiently handled by the MAC
grid. In order to accomplish this, we developed a meshing algorithm that not only correctly captures the
fluid geometry but also conforms to the MAC grid in the interior. Since meshing is limited to a narrow band
near the fluid interface, it only takes a small portion of the total computational time especially with large
grid resolutions.

We developed both first and second order accurate advection schemes on this hybrid structure. Particles
are moved forward using the forward Euler method or the second order accurate Runge-Kutta method.
The quantities on the MAC grid are advected using the semi-Lagrangian method or the semi-Lagrangian
style MacCormack method. In order to enable the semi-Lagrangian back tracing needed by both of these
methods, a band of ghost cells are filled with valid data either by interpolating from the Lagrangian mesh
or by extrapolating from the MAC grid region inside the fluid.

We developed a monolithic second order accurate Poisson equation solver by coupling the Lagrangian
mesh with the MAC grid in an orthogonal fashion. The node-based finite volume method from [8, 27] is used

55



(a) t = 0 s

(b) t = .95 × 10−5 s

(c) t = 1.16 × 10−5 s

(d) t = 1.32 × 10−5 s

Figure 42: The 3D test of a liquid column breaking up into multiple droplets.
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(a) t = 0 s (b) t = .125 s (c) t = .225 s (d) t = .2625 s

(e) t = .3075 s (f) t = .325 s (g) t = .35 s (h) t = 1 s

Figure 43: The 3D droplet dripping test.
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(a) t = 0 s (b) t = .02 s (c) t = .04 s

(d) t = .06 s (e) t = .08 s (f) t = .1 s

(g) t = .12 s (h) t = .14 s (i) t = .18 s

(j) t = .22 s (k) t = .3 s (l) t = .36 s

Figure 44: The 3D droplet impact test with surface tension.
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Figure 45: The 3D droplet impact test with surface tension at time t = .08 s.
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on the Lagrangian mesh, while the typical MAC grid discretization is used on the MAC grid. We then proved
that the Lagrangian mesh discretization is orthogonal, and based on the findings we devised a novel method
to couple the Lagrangian mesh discretization and the MAC grid discretization in an orthogonal fashion.
Numerical tests in both two and three spatial dimensions demonstrate that this coupled discretization is
second order accurate. We also extended this Poisson equation solver to solve the heat equation on cell
centers and modified it to solve for viscous forces on staggered MAC grid faces.

With the above building blocks, we used a splitting method [12] to solve the Navier-Stokes equations
without surface tension. The droplet impact test and the dam break test in both two and three spatial
dimensions were used to demonstrate the ability of our method to resolve details in complex free surface
flows.

We also explored stable methods for simulating surface tension using a step-by-step constructive approach
on a fully Lagrangian representation. Our first implementation was a semi-implicit scheme where both
the normal-directional and all-directional implicit models were tested. The all-directional model showed
significant improvement on stability over the normal-directional model, but it suffers from inaccuracy when
taking large time steps. To address this issue, we developed a fully implicit scheme by evaluating all matrices
at the end of the time step resulting in a nonlinear system. An iterative nonlinear solver is used to solve
this nonlinear system where an approximate Jacobian matrix is computed to linearize the system at each
iteration. This scheme achieves a steady state solution with large time steps, but it suffers from severe volume
error. To solve this problem, we replaced the divergence-free condition with a constant-volume condition
resulting in a fully implicit volume conserving scheme that can achieve a steady state solution with large
time steps while conserving volume. We then extended this scheme to our hybrid particle grid structure. In
addition, we also showed that the same ideas can be applied to the standard front tracking method and the
particle level set method. A number of numerical tests were used to examine the ability of our method for
surface tension.

9. Limitations and Future Work

There are numerous avenues for future work. In this paper, we have used marker particles throughout the
entire fluid region for simplicity, and a further optimization would be to use particles only within a band near
the free surface. In Section 2, the Lagrangian mesh is generated against the boundary of the computation
domain, but a more efficient solution would allow MAC grid cells to touch the boundary and only mesh the
region near the free surface. In Section 4, the coupled Poisson equation system is solved using the conjugate
gradient method without a preconditioner. In Section 5, the spatial discretization in three spatial dimensions
is not orthogonal when enforcing a Neumann boundary condition on the free surface boundary. Although
the numerical results show second order accuracy due to the tendency toward orthogonality under grid
refinement, a fully orthogonal discretization would be preferable. In Section 7, the fully implicit schemes are
stable but computationally expensive because they require solving a linear system for all degrees of freedom
at every iteration. Motivated by the method from [1], we would like to explore simplified models that replace
large fluid regions by single degrees of freedom in order to speed up the nonlinear solver. Section 7.5 explores
the fully implicit method with the hybrid mesh/grid structure but conserves the volume of the interior MAC
grid regions in a global fashion. Whereas it is straightforward to track and correct the volume of each
individual MAC grid region, it is not clear how to partition the volume when bulks of liquid are pinching
due to the complication of remeshing. A local volume conservation scheme would be preferable for future
work. In addition, Section 7.6 explores the fully implicit method with standard front tracking and level set
methods but uses global volume conservation. Local volume conservation would also be preferable here.
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