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Abstract

In this paper we describe new formulations and develop fgst a
rithms for implicit surface reconstruction based on vaoiaal and
partial differential equation (PDE) methods. In particulze use
the level set method and fast sweeping and tagging methads to
construct surfaces from scattered data set. The data skt otg-
sist of points, curves and/or surface patches. A weightedmail
surface-like model is constructed and its variational lee¢formu-
lation is implemented with optimal efficiency. The reconsted
surface is smoother than piecewise linear and has a nataiahg
in the regularization that allows varying flexibility acclimg to the
local sampling density. As is usual with the level set metiveccan
handle complicated topology and deformations, as well &sy/ray
highly non-uniform data sets easily. The method is basedsima
ple rectangular grid, although adaptive and trianguladgyére also
possible. Some consequences, such as hole filling capabilé
demonstrated, as well as the viability and convergence ohew
fast tagging algorithm.

Keywords: implicit surface, partial differential equations, vari-
ational formulation, convection, minimal surface.

1 Introduction

Surface reconstruction from unorganized data set is veajlag-
ing in three and higher dimensions. The problem is ill-posed
there is no unique solution. Furthermore the ordering omeon
tivity of data set and the topology of the real surface candxy v
complicated in three and higher dimensions. A desirablerrec
struction procedure should be able to deal with complic&bedl-
ogy and geometry as well as noise and non-uniformity of tha da
to construct a surface that is a good approximation of the dat
and has some smoothness (regularity). Moreover, the rccted
surface should have a representation and data structures that
only good for static rendering but also good for deformatemmima-
tion and other dynamic operation on surfaces. None of theente
approaches possess all of these properties. In genera &ner
two kinds of surface representations, explicit or implidixplicit
surfaces prescribe the precise location of a surface whifgi¢it
surfaces represent a surface as a particular isocontoursoélar
function. Popular explicit representations include pastio sur-
faces and triangulated surfaces. For examples, for paranseir-
faces such as NURBS [26, 27], the reconstructed surfaceastbm
and the data set can be non-uniform. However this requires®n
parametrize the data set in a nice way such that the recotetiru
surface is a graph in the parameter space. The paramedrizatd
patching can be very difficult for surface reconstructioonfr an
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arbitrary data set in three and higher dimensions. Alsoengis
the data set is difficult to deal with. Another popular apgioin
computer graphics is to reconstruct a triangulated susfarsng
Delaunay triangulations and Voronoi diagrams. The recanstd
surface is typically a subset of the faces of the Delaunayndgyila-
tions. A lot of work has been done along these lines [3, 4, 71Tp
and efficient algorithms are available to compute Delaumniay-t
gulations and Voronoi diagrams. Although this approach @sem
versatile in that it can deal with more general data setsctime
structed surface is only piecewise linear and it is diffitcalhandle
non-uniform and noisy data. Furthermore the tracking ajéade-
formations and topological changes is usually quite diffiaging
explicit surfaces.

Recently, implicit surfaces or volumetric representagibave at-
tracted a lot of attention. The traditional approach [6,31),uses a
combination of smooth basis functions (primitives), sustbbs,
to find a scalar function such that all data points are closstigo-
contour of that scalar function. This isocontour represéné con-
structed implicit surface. However computation costs @my Yigh
for large data sets, since the construction is global whéegults
in solving a large linear system, i.e. the basis functiores cou-
pled together and a single data point change can result bafijo
different coefficients. This makes human interaction, éncental
updates and deformation difficult. The second approach tiges
data set to define a signed distance function on rectangtitis g
and denotes the zero isocontour of the signed distanceidunas
the reconstructed implicit surface [5, 8, 19]. The condtaurc of
the signed distance function uses a discrete approach aais na
estimation of local tangent planes or normals for the oataon, i.e.
a distinction needs to be made between inside and outsidei- Si
lar ideas have been applied to shape reconstruction frogerdata
and image fusion [13, 18] where partial connections ardaivia on
each piece of data. Special “fusion” or “tiling” algorithmmeed on
overlapping patches. In [28] an interesting volume splingsied for
reconstruction of implicit surfaces. But the constructiapends on
the choice of a “carrier” solid and can deal with data sets ofler-
ate size. The main advantages of implicit surfaces inclagelbg-
ical flexibility, a simple data structure, depth/volumetimforma-
tion and memory storage efficiency. Using the signed digtaep-
resentation, many surface operations such as Booleantmpesa
ray tracing and offset become quite simple [24, 31]. Effitigh
gorithms, see e.g. [21, 32], are available to turn an imipdiciface
into a triangulated surface. In [15] implicit surfaces ased for an-
imation and the level set method is used for surface reagetsin
from range data in [10]. In fact the level set method [23] jles a
general framework for the deformation of implicit surfacexord-
ing to arbitrary physical and/or geometric rules.

We approach the fundamental problem of surface recongiruct
on the continuous level by constructing continuous modsiagu
differential geometry and partial differential equatiolfge also de-
velop efficient and robust numerical algorithms for our ¢ambus
formulations. Moreover we combine the level set method amd i
plicit surfaces to provide a general framework for surfacaeling,
analysis, deformation and many other applications. In oevipus
work [34] we proposed a new “weighted” minimal surface model
based on variational formulations and PDE methods. Onlyuthe
signed distance function to the data set was used in our fation.
Our reconstructed surface is smoother than piecewiserliiread-



dition, in our formulation there is a regularization thatidaptive
to the local sampling density which can keep sharp featfigeokr
cal sampling condition is satisfied. The formulation hasdieisy
as well as non-uniform data and works in any number of dimen-
sions. We use the level set method as the numerical techtique
deform the implicit surface continuously following the drant de-
scent of the energy functional for the final reconstructimstead of
tracking a parametrized explicit surface we solve a PDE dma s
ple rectangular grid and handle topological changes edsilthis
paper we develop a simple physically motivated convectiadeh
and a fast tagging algorithm to construct a good initial agpna-
tion for our minimal surface reconstruction. This will splegp our
previous reconstruction by an order of magnitude.

In the next section we briefly review the variational forntida
for the weighted minimal surface model in introduced in [34
physically motivated simple convection model is develojpeskec-
tion 3. In section 4 we introduce the level set method for aobp
lems. We explain the details of the numerical algorithmseictisn
5 and show results in section 6.

2 A Weighted Minimal Surface Model

Let S denote a general data set which can include data points,

curves or pieces of surfaces. Defilee) = dist(x,S) to be the
distance function t&. (We shall use bold faced characters to de-
note vectors.) In [34] the following surface energy is defirfier
the variational formulation:

B(T) = [/Fd?’(:c)ds} 1<p<os,

whereT is an arbitrary surface ands is the surface area. The
energy functional is independent of parametrization armaeriant
under rotation and translation. When= co, E(T') is the value of
the distance of the point on I furthest fromS. Forp < oo,
The surface energiZ(T') is equivalent tof dP(x)ds, the surface
area weighted by some power of the dlstance function. Wetteke
local minimizer of our energy functional, which mimics a gkied
minimal surface or an elastic membrane attached to the dattos
be the reconstructed surface.

As derived in [34] the gradient flow of the energy functiont) (
is

@)

dr _

1_q 1
== {Vd(:c)n%—;d(:c)ﬁ} n

_ U dp(:c)ds} (@)
T
)

and the minimizer or steady state solution of the gradiemt fat-
isfies the Euler-Lagrange equation

& (z) {W(m) ‘n+ %d(ﬂ:)n} —0, @A)

wheren is the unit outward normal and is the mean curvature.
We see a balance between the attraciof(x) - n and the sur-
face tensionl(x)«x in the equations above. Moreover the nonlinear
regularization due to surface tension has a desirablenspd(ic).
Thus the reconstructed surface is more flexible in the regioare
sampling density is high and is more rigid in the region whbe
sampling density is low. In the steady state equation(3yajsince
Vd - n < 1, we have a local sampling density condition similar to
the one proposed in [3], which says sampling densities shiaul
solve fine features locally. To construct the minimal swfae
used a continuous deformation in [34]. We start with anahgiur-
face that encloses all data and follow the gradient flow (2he T
parametep affects the flexibility of the membrane to some extent.

Whenp = 1, the surface energy defined in (1) has the dimension of
volume and the gradient flow (2) is scale invariant i.e., digien-
less. In practice we find that= 1 or 2 (similar to a least squares
formulation) are good choices. Some more details can bedfaun
[34].

In two dimensions, it was shown in [34] that a polygon which
connects adjacent points by straight lines is a local minimtihis
result shows a connection between the variational forrrariand
previous approaches. On the other hand this result is nptising
since a minimal surface passing through two points is agittdine
in two dimensions. However in three dimensions the situalie-
comes much more interesting. The reconstructed miniméhcer
has no edges and is smoother than a polyhedron.

Remark: The formulation here is similar to active contour mod-
els for image segmentation in [12, 11] and minimal surfaceleho
in [33]. However the application, motivation and working cha-
nism are quite different. In image segmentation, the finalesior
surfaces are wrapped along some edges, i.e., some corgihigiu
contrast contours on the grid and the contrast is alreadyelfi
on every grid point. In our application, we have arbitrargatete
points and none of the distance contours to the data poiriteis
final surface.

3 The Convection Model

The evolution equation (2) involves the mean curvature efsir-
face and is a nonlinear parabolic equation. A time implichieame
is not currently available. A stable time explicit schemeuiees a
restrictive time step size\t = O(h?), whereh is the spatial grid
cell size. Thus it is very desirable to have an efficient atpor to
find a good approximation before we start the gradient flowtlier
minimal surface. We propose the following physically matad
convection model for this purpose.

The convection of a flexible surfadein a velocity fieldv(x) is
described by the differential equation

ar ()

= = v(T(®)).

If the velocity field is created by a potential field, thenv =
—VZF. In our convection model the potential field is the distance
functiond(x) to the data se§. This leads to the convection equa-

tion I (1)
o (4)

For example, if the data set contains a single psintthe potential

= —Vd(z).

field isd(xz)=|z—x| and the velocity field i®(z) = —Vd(z) =
— £ i a unit vector pointing towards,. Any particle in this

potentlal field will be attracted toward, along a straight line with
unit speed. For a general data $eta particle will be attracted to
its closest point it unless the particle is located an equal distance
from two or more data points. The set of equal distance pbiass
measure zero. Similarly, points on a curve or a surface,gtbese
equal distance points, are attracted by their closestpoirihe data
set (see Fig. 1(a)). The ambiguity at those equal distanicespis
resolved by adding a small surface tension force which aatem
cally exists as numerical viscosity in our finite differerszemes.
Those equal distance points on the curve or surface are efidmg
their neighbors and the whole curve or surface is attractetthe
data set until it reaches a local equilibrium, which is a goly or
polyhedron whose vertices belong to the data set as thesifgco
tends to zero (see Fig.1(b)).

Here are some properties of this simple convection modgl: (1
the normal velocity of the curve or the surface is less thaequal
to 1, (2) each point of the curve or surface is attracted bgldsest
point in the data set.
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(a) the attraction of a piece of curve by two points, (b) dbtiee
is the initial curve, solid line is the final curve, dashecklis the
Voronoi diagram.

Figure 1:

Figure 1(b) is an illustration of the convection of a curve.
The initial curve (the dotted rectangle) feels the att@ctof
x1,x2,x3, x4 and closes in. Then it begins to feek. The fi-
nal shape is a pentagon that goes throwghz,, 3,24 andzs
while z¢ is screened out.

Since the convection equation is a first order linear diffiere
tial equation, we can solve it using a time st&g = O(h)
leading to significant computational savings over typicaigolic
At = O(h?) time step restrictions. The convection model by it-
self very often results in a good surface reconstructionsection
5 we will construct a very fast tagging algorithm that findsade
approximation of the local equilibrium solution for our e@ttion
model.

4 The Level Set Formulation

In general we do not have any & priori knowledge about theltop
ogy of the shape to be reconstructed. Topological changgma
cur during the continuous deformation process. This makpko#
tracking, which requires consistent parametrization,cesthimpos-
sible to implement. Here we use the level set method as a fudwer
numerical technique for the deformation of implicit sudac Al-
though implicit surfaces have been used in computer graghic
quite a while, they were mostly used for static modeling ardew
based on discrete formulations [6]. Trewel set method is based
on a continuous formulation using PDEs and allows one tordefo
an implicit surface, which is usually the zero isocontourndaicalar
(level set) function, according to various laws of motiorpeled-
ing on geometry, external forces, or a desired energy miration.
In numerical computations, instead of explicitly trackiagnov-
ing surface we implicitly capture it by solving a PDE for thevél
set function on rectangular grids. The data structure ieextly
simple and topological changes are handled easily. Thé $ete
formulation works in any number of dimensions and the comput
tion can easily be restricted to a narrow band near the zeeb $et,
see e.g. [1, 25]. We can locate or render the moving surfegityea
by interpolating the zero isosurface of the level set fuoreti The
level set method was originally introduced by Osher andiSetim
[23] to capture moving interfaces and has been used quitessc
fully in moving interface and free boundary problems as waslin
image processing, image segmentation and elsewhere. &dei2
a comprehensive review.

properties of the surfacF can be easily computed usirg (2)
Embed the motion: we derive the time evolution PDE for thelev
set function such that the zero level set has the same matioas
the moving surface, i.eL(t) = {x : ¢(x,t) = 0},

dp(L'(t),t)
dt

= ¢+ —dr(t) -Vo¢ =0,

dt ®)

where we replacéird‘# with the velocity ofz on T = {z :
¢(.t) = 0}.

For geometric motions, i.e. where the motion law (velocig}
pends only on the geometry of the moving surface, the mostalat
way to definev is to apply the same motion law for all level sets
of the level set function, which will result in a morphologid®DE
[2]. For example, the gradient flow (2) is a geometric motiod a

we usep = 1 for simplicity. After we extend the geometric motion
to all level sets, the gradient flow in level set formulati@tbmes
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(6)
For the convection model (4), since the velocity fiel¥d(x) is
defined everywhere, we can naturally extend the convectiaail t
level sets ofp(x, t) to obtain

% _ Vd(x) - V.

5 @)

Although all level set functions are equally good theowdtc
in practice the signed distance function is preferred tadhstff-
ness and inaccuracy in numerical computations. However gve
we start with a signed distance function the level set famctiill
generally not remain a signed distance function. As an el@mp
the convection model all level sets are attracted to the skttai-
multaneously and they become more and more packed togéiker.
need a procedure to force them apart while keeping the zeeb le
set intact. We use a numerical procedure called reinititiin, see
e.g. [25, 29], to redistance the level set function localighaut
interfering with the motion of the zero level set. As a reshk
implicit surface is a signed distance function after theodwfation
procedure stops.

5 Numerical Implementation

There are three key numerical ingredients in our implicitface
reconstruction. First, we need a fast algorithm to complugedis-
tance function to an arbitrary data set on rectangular géésond,
we need to find a good initial surface for our gradient flow. rd@hi
we have to solve time dependent PDEs for the level set fumctio

5.1 Computing the distance function

The distance functiod(x) to an arbitrary data sef solves the
following Eikonal equation:
IVd(z)| =1, d(z)=0,z€S. (8)
From the PDE point of view, the characteristics of this Eikon
equation are straight lines which radiate from the data Jdiis
reveals the causality property for the solution of the PD&, the
information propagates along straight lines from the data and
the solution at a grid point should be determined only by égh-
boring grid points that have smaller distance values. Weaise

Two key steps for the level set method are: (1) Embed the sur- algorithm [9, 34] that combines upwind differencing with 3a-

face: we represent a surfaeas the zero isocontour of a scalar
(level set) functionp(zx), i.e. T' = {x : ¢(x) = 0}. Geometric

Seidel iterations of different sweeping order to solve (8yectan-
gular grids.



From numerical experiments it seems that the total number of the temporary boundary becomes the furthest point and hivece

iterations is independent of mesh size, i.e. the compléxi®y( M + whole temporary boundary moves inward. After a while thegem
N) for N grid points andM data points. The differences between rary boundary is close to a distance contour and moves ctoskr
our algorithm and Danielsson’s distance mapping algorifhh4j closer to the data set following the distance contours timildis-

are (1) our data points are not grid points and that is why we laa tance contours begin to break into spheres (circles in thégibe)
complexityO(M + N), (2) our algorithm can be applied to more  around data points. We now see that the temporary boundamy po
general equations wheix) is not a distance, e.g., the right hand at the breaking point of the distance contour, which is dyjudit-
side of 8 can be an arbitrary function i Our fast algorithm is tant from distinct data points, will have neighboring inbempoints
versatile, efficient and will be used in later stages of thdase that have a larger distance. So this temporary boundaryt pain
reconstruction. be tagged as a final boundary point by our procedure and thotem
rary boundary will stop moving inward at this breaking poifite
temporary boundary starts deviating from the distancearostand
5.2 Finding a good initial guess continues moving closer to the data set until all temporanyria-
) o ) ary points either have been tagged as final boundary poirdseor
We can use an arbitrary initial surface that contains tha siet such close to the data points. The final boundary is approximaaely
as a rectangular bounding box, since we do not have to asswne a polyhedron (polygon in 2D) with vertices belonging to theadset.

a priori knowledge for the topology of the reconstructedate. This general tagging algorithm can incorporate human aater
However, a good initial surface is important for thg efflcngnf our tion easily by putting any new exterior point(s) or regiori(go our
PDE based method. On a rectangular grid, we view an implicits  (495ed exterior region at any stage in our tagging algoritAfter
face as an interface with some regularity that separatesxteeior the tagging algorithm is finished we again use the fast distah
grid points from the interior grid points. In other words lummetric gorithm to compute a signed distance to the tagged final koynd
rendering requires i.de'ntifying all exterior (interior)idpoints cor- The marching method (outlined above) requires an initigssgu
rectly. Based on this idea, we propose a novel, extremelgiexi for the exterior region. This can either be the bounding bbaus
tagging algorithm that tries to identify as many correceeir grid computational rectangular domain or an outer contour ofdise
points as possible and hence provide a good initial impdisitace. tance functiond(z) = e. An outer contour of the distance function
As always, we start frc_)m any initial exterior region that isubset can be found by starting with the outer boundary of our regptiar
of the true exterior region. . L . , box, and expanding the exterior region by repeatedly taptiinse
All grid points that are not in the initial exterior regionear grid points which are neighbors of the expanding exteriaurish
labeled as interior points. Those interior grid points thate ary and have a distance larger thams exterior points. All re-

at _Ieast one exterior neighbor are labeled as temporarydaoyn maining untagged grid points are interior points. When tuging
points. Now we use the following procedure to march the tem- gigorithm is finished the boundary of the exterior regionpiprax-
porary boundary inward toward the data set. We put all the tem jmately the outer contour af(z) = e or roughly ane offset of
porary boundary points in a heapsort binary tree structaréng the real shape. When using thigz) = ¢ method, first proposed
according to distance values. Take the temporary boundaint p  in [34], one needs to exercise caution in choosingor example,
that has the largest distance (which is on the heap top) agtkch i ¢ is too small, we will have isolated spheres surrounding data

to see if it has an interior neighbor that has a larger or edisal points. If the sampling density of the data points does not t@
tance value. If it does not have such an interior neighbon this much and is fine enough to resolve all features, then we camfind
temporary boundary point into an exterior point, take trogpout appropriates and get a very good initial surface with(N + M)

of the heap, add all this point's interior neighbors intokieap and  gperations. For non-uniform data points the intersectfantmund-
re-sort according to distance values. If it does have sucimt@n  ing box and a distance contour with moderatevhich is a simple
rior neighbor, we turn this temporary boundary point into rzafi Boolean operation, often gives a good initial surface.

boundary point, take it out of the heap and re-sort the heameN
of its neighbors are added to the heap. We repeat this progedu
on the temporary boundary points until the the maximum dista
of the temporary boundary points is smaller than some totera
e.g. the size of a grid cell, which means all the temporaryndeu
ary points in the heap are close enough to the data set. Finall
turn these temporary boundary points into the final set ohdauy
points and our tagging procedure is finished. Now we have tia¢ fi
sets of interior, exterior and boundary points. Since wé @ach
interior grid point at most once, the procedure will be coetgdl
in no more tharO(V log V) operations, whertbg N comes from
the heap sort algorithm. Moreover, since the maximum déstdor
the boundary heap is strictly decreasing, we can prove Huatet
interior points which have a distance no smaller than theimarm
distance of the temporary boundary heap at any time will ieras
interior points, i.e. there is a non-empty interior regiohem the
tagging algorithm is finished. We can also show that at least o

—— marching boundary
- distance contour

of the final boundary points is within the tolerance distatathe ¢ datapoint
data set. Similar tagging algorithms can also be appliechttirfg '
interior regions and disconnected components of the firggdeh Figure 2:

Figure 2 illustrates how our fast tagging algorithm worksarg
ing from an arbitrary exterior region that is a subset of thalfexte-
rior region, the furthest point on the temporary boundartaigent
to a distance contour and does not have an interior poinigHat-
ther away. The furthest point will be tagged as an exteriantpand After we find the distance functiod(x) and a good initial implicit
the boundary will move inward at that point. Now another paoin surface using the above algorithms, we can start the canisu

5.3 Solving the partial differential equation.



deformation following either the gradient flow (2) or the wen-
tion (4) using the corresponding level set formulation (6)10).
Our numerical implementations are based on standard Higusi
for the level set method. Details can be found in, for example
[25, 33, 34]. The convection model is simple but the recamcséd
surface is close to a piecewise linear approximation. Irtresh
the energy minimizing gradient flow, which contains a wegght
curvature regularization effect, is more computationakpensive
but reconstructs a smooth weighted minimal surface. Iriqaar,

the gradient flow can be used as a smoothing process for iinplic
surfaces. In most of our applications, about one hundred steps

in total are enough for our continuous deformation. Sincaisea
reinitialization procedure during the deformation, we $miwith a
signed distance function for the reconstructed implicifate.

5.4 Multiresolution

There are two scales in our surface reconstruction. Oneeisetb-
olution of the data set. The other is the resolution of thd.gfihe
computational cost generally depends mainly on the griel. sio
achieve the best results those two resolutions should bpa@le.
However our grid resolution can be independent of the sargpli
density. For example, we can use a low resolution grid whereth

is noise and redundancy in the data set or when memory and spee

are important. From our numerical results, see e.qg., fig(ck&ur
reconstruction is quite smooth even on a very low resolugiod.
We can also use a multiresolution algorithm, i.e., recamstthe
surface first on coarser grids and interpolate the result fioex
resolution grid for further refinement in an hierarchicalywa

5.5 Efficient storage

To store or render an implicit surface, we only need to red¢bed
values and locations (indices) of those grid points thatnepd to
the surface, i.e., those grid points that have a differegn iom
at least one of their neighbors. These grid points form a ghid
shell surrounding the implicit surface. No connectivity aher
information needs to be stored. We reduce the file size byast le
an order of magnitude by using this method. Moreover we can
easily reconstruct the signed distance functio®{{iV) operations
for the implicit surface using the following procedure. (d3e the
fast distance finding algorithm to find the distance functising
the absolute value of the stored grid shell as an initial @¢em
(2) Use a tagging algorithm, similar to the one used aboventb fi
exterior points outside a distance contour, to identifyeadlerior
points and interior points separated by the stored grid shelturn
the computed distance into the signed distance. For exarniple
we store the signed distance function for our reconstruttappy
Buddha from almost half a million points onld6 x 350 x 146
grid in binary form, the file size is about 30MB. If we use th@ab
efficient way of storage the file size is reduced to 2.5MB witho
using any compression procedure and we can reconstrudgtieds
distance function in 1 minute using the above algorithm .

6 Results

In this section we present numerical examples that illtestitze ef-
ficiency and quality of our surface construction. In parfdgcuve
show (1) the level set method handles surface deformatidogoo-
logical change easily, (2) our fast tagging algorithm cargs a
good initial guess very quickly, (3) how smooth the recamnstied
surfaces are, (4) our algorithm works with non-uniform, gyoi
or damaged data, and (5) multiresolution works in our foamul
tion. All calculations were done with dual Pentium Ill, 608X
processors.

Model Data Grid CPU CPU

points size (initial) | (total)
Ratbrain| 1506 80x77x79 A2 3
Hand 327323 200x141x71 .5 10
Drill 1961 24x250x32 0.1 2
Dragon | 437645 300x212x136 4 77
Dragon | 100250 300x212x136 3 66
Buddha | 543652 | 146x350x146 3 68
Buddha | 543652| 63x150x64 3 7

Figure 3: timing table

were obtained from www-graphics.stanford.edu/data/aiDsep
and data points for the hand skeleton was obtained from
www.cc.gatech.edu/projects/largeodels. Only locations of the
data points are used in our reconstructions. Timings, nufmata
points and grid size are shown in table 3. CPU time is meadared
minutes. CPU (initial) is the time for the initial reconsttion us-

ing the distance contour and the fast tagging algorithm. @Btal)

is the total time used for the reconstruction. Since our PB&ed
algorithms are iterative procedures, different conveogetriterion

will give different convergence times.

Figure 4 shows data points for a torus, a few curves (longiud
and latitudes) on a sphere, data points from MRI slices faita r
brain. Figure 5 shows the final surface reconstruction friwe t
above data. We see that the hole in the torus is filled nicetl wi
a minimal surface. For the sphere sphere reconstructionnke o
provide the unsigned distance function to the curves whiaorhle
viewed as an extreme case of non-uniform data. Since thesdtgta
in these three cases are quite non-uniform, we use eithearzdbo
ing box as the initial surface (in the case of torus and sptwerthe
intersection of a bounding box and an outer distance comtitir
relatively largee. (e = 12h in the case of the rat brain.)

For data sets that are fairly uniform, such as the drill, hslede-
ton, the dragon and the Buddha, we start with an outer distanc
contour and use the fast tagging algorithm to get an inigabn-
struction. The initial reconstruction is extremely fass, we can
see from table 3. After the initial reconstruction, we firseuhe
convection model and then use the gradient flow to finish tha fin
reconstruction. In our reconstruction, the grid resolutis much
lower than the data samples and yet we get final results tleat ar
comparable to the reconstructions shown at those websitaea

Figure 6 shows the reconstruction of a hand skeleton. Figure
is the reconstruction of a drill. It is a quite challengingaexple for
most methods for surface reconstruction as is shown in W&kt
we show the reconstruction of a dragon o308 x 212 x 136 grid
using a high resolution data in fig.8(a) and a much lower retsmi
data in fig.8(b). We can barely see the difference. Figureo®vsh
the reconstruction of the Happy Buddha. Figure 9(a) shows th
initial reconstruction. We start with an outer distancetoon d =
3h, initially and use the fast tagging algorithm. It takes 3 ntés
for half a million points on d46 x 350 x 146 grid. Figure 9(b) is
the final reconstruction. Figure 9(c) is the reconstructiara very
coarses3 x 150 x 64 grid using the same amount of data points. It
takes only 7 minutes and the result is quite good.

7 Conclusions

We present a variational and PDE based formulation for sarfa-
construction from unorganized data. Our formulation orépends
on the (unsigned) distance function to the data and the fatain-
struction is smoother than piecewise linear. We use thd kate
method as a numerical tool to deform and construct impligit s

Data points for the drill, dragon and the Buddha faces on fixed rectangular grids. We use fast sweeping #hgosi



for computing the distance function and fast tagging atbars for
initial construction. Our method works for complicated dtqmy
and non uniform or noisy data.
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Figure 4: initial data

hole filling of a torus reconstruction of a sphere from curves reconstruction of a rat brain from MRI slices

Figure 5: final reconstruction

(a) initial reconstruction (b) final reconstruction

Figure 6: reconstruction of a hand skeleton

Figure 7: reconstruction of a drill



(d) low resolution reconstruction

Figure 8: reconstruction of the dragon

(a) initial reconstruction (b) final reconstruction (c) omstruction on a coarse grid

Figure 9: reconstruction of the Happy Buddha



