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Abstract

In this paper we describe new formulations and develop fast algo-
rithms for implicit surface reconstruction based on variational and
partial differential equation (PDE) methods. In particular we use
the level set method and fast sweeping and tagging methods tore-
construct surfaces from scattered data set. The data set might con-
sist of points, curves and/or surface patches. A weighted minimal
surface-like model is constructed and its variational level set formu-
lation is implemented with optimal efficiency. The reconstructed
surface is smoother than piecewise linear and has a natural scaling
in the regularization that allows varying flexibility according to the
local sampling density. As is usual with the level set methodwe can
handle complicated topology and deformations, as well as noisy or
highly non-uniform data sets easily. The method is based on asim-
ple rectangular grid, although adaptive and triangular grids are also
possible. Some consequences, such as hole filling capability, are
demonstrated, as well as the viability and convergence of our new
fast tagging algorithm.

Keywords: implicit surface, partial differential equations, vari-
ational formulation, convection, minimal surface.

1 Introduction

Surface reconstruction from unorganized data set is very challeng-
ing in three and higher dimensions. The problem is ill-posed, i.e,
there is no unique solution. Furthermore the ordering or connec-
tivity of data set and the topology of the real surface can be very
complicated in three and higher dimensions. A desirable recon-
struction procedure should be able to deal with complicatedtopol-
ogy and geometry as well as noise and non-uniformity of the data
to construct a surface that is a good approximation of the data set
and has some smoothness (regularity). Moreover, the reconstructed
surface should have a representation and data structure that is not
only good for static rendering but also good for deformation, anima-
tion and other dynamic operation on surfaces. None of the present
approaches possess all of these properties. In general there are
two kinds of surface representations, explicit or implicit. Explicit
surfaces prescribe the precise location of a surface while implicit
surfaces represent a surface as a particular isocontour of ascalar
function. Popular explicit representations include parametric sur-
faces and triangulated surfaces. For examples, for parametric sur-
faces such as NURBS [26, 27], the reconstructed surface is smooth
and the data set can be non-uniform. However this requires one to
parametrize the data set in a nice way such that the reconstructed
surface is a graph in the parameter space. The parametrization and
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arbitrary data set in three and higher dimensions. Also noise in
the data set is difficult to deal with. Another popular approach in
computer graphics is to reconstruct a triangulated surfaces using
Delaunay triangulations and Voronoi diagrams. The reconstructed
surface is typically a subset of the faces of the Delaunay triangula-
tions. A lot of work has been done along these lines [3, 4, 7, 16, 17]
and efficient algorithms are available to compute Delaunay trian-
gulations and Voronoi diagrams. Although this approach is more
versatile in that it can deal with more general data sets, thecon-
structed surface is only piecewise linear and it is difficultto handle
non-uniform and noisy data. Furthermore the tracking of large de-
formations and topological changes is usually quite difficult using
explicit surfaces.

Recently, implicit surfaces or volumetric representations have at-
tracted a lot of attention. The traditional approach [6, 20,30] uses a
combination of smooth basis functions (primitives), such as blobs,
to find a scalar function such that all data points are close toan iso-
contour of that scalar function. This isocontour represents the con-
structed implicit surface. However computation costs are very high
for large data sets, since the construction is global which results
in solving a large linear system, i.e. the basis functions are cou-
pled together and a single data point change can result in globally
different coefficients. This makes human interaction, incremental
updates and deformation difficult. The second approach usesthe
data set to define a signed distance function on rectangular grids
and denotes the zero isocontour of the signed distance function as
the reconstructed implicit surface [5, 8, 19]. The construction of
the signed distance function uses a discrete approach and needs an
estimation of local tangent planes or normals for the orientation, i.e.
a distinction needs to be made between inside and outside. Simi-
lar ideas have been applied to shape reconstruction from range data
and image fusion [13, 18] where partial connections are available on
each piece of data. Special “fusion” or “tiling” algorithm is need on
overlapping patches. In [28] an interesting volume spline is used for
reconstruction of implicit surfaces. But the constructiondepends on
the choice of a “carrier” solid and can deal with data sets of moder-
ate size. The main advantages of implicit surfaces include topolog-
ical flexibility, a simple data structure, depth/volumetric informa-
tion and memory storage efficiency. Using the signed distance rep-
resentation, many surface operations such as Boolean operations,
ray tracing and offset become quite simple [24, 31]. Efficient al-
gorithms, see e.g. [21, 32], are available to turn an implicit surface
into a triangulated surface. In [15] implicit surfaces are used for an-
imation and the level set method is used for surface reconstruction
from range data in [10]. In fact the level set method [23] provides a
general framework for the deformation of implicit surfacesaccord-
ing to arbitrary physical and/or geometric rules.

We approach the fundamental problem of surface reconstruction
on the continuous level by constructing continuous models using
differential geometry and partial differential equations. We also de-
velop efficient and robust numerical algorithms for our continuous
formulations. Moreover we combine the level set method and im-
plicit surfaces to provide a general framework for surface modeling,
analysis, deformation and many other applications. In our previous
work [34] we proposed a new “weighted” minimal surface model
based on variational formulations and PDE methods. Only theun-
signed distance function to the data set was used in our formulation.
Our reconstructed surface is smoother than piecewise linear. In ad-



dition, in our formulation there is a regularization that isadaptive
to the local sampling density which can keep sharp features if a lo-
cal sampling condition is satisfied. The formulation handles noisy
as well as non-uniform data and works in any number of dimen-
sions. We use the level set method as the numerical techniqueto
deform the implicit surface continuously following the gradient de-
scent of the energy functional for the final reconstruction.Instead of
tracking a parametrized explicit surface we solve a PDE on a sim-
ple rectangular grid and handle topological changes easily. In this
paper we develop a simple physically motivated convection model
and a fast tagging algorithm to construct a good initial approxima-
tion for our minimal surface reconstruction. This will speed up our
previous reconstruction by an order of magnitude.

In the next section we briefly review the variational formulation
for the weighted minimal surface model in introduced in [34]. A
physically motivated simple convection model is developedin sec-
tion 3. In section 4 we introduce the level set method for our prob-
lems. We explain the details of the numerical algorithms in section
5 and show results in section 6.

2 A Weighted Minimal Surface Model

Let S denote a general data set which can include data points,
curves or pieces of surfaces. Defined(x) = dist(x;S) to be the
distance function toS. (We shall use bold faced characters to de-
note vectors.) In [34] the following surface energy is defined for
the variational formulation:E(�) = �Z� dp(x)ds� 1p : 1 � p � 1; (1)

where� is an arbitrary surface andds is the surface area. The
energy functional is independent of parametrization and isinvariant
under rotation and translation. Whenp =1, E(�) is the value of
the distance of the pointx on � furthest fromS. For p < 1,
The surface energyE(�) is equivalent to

R� dp(x)ds, the surface
area weighted by some power of the distance function. We takethe
local minimizer of our energy functional, which mimics a weighted
minimal surface or an elastic membrane attached to the data set, to
be the reconstructed surface.

As derived in [34] the gradient flow of the energy functional (1)
is d�dt =��Z� dp(x)ds� 1p�1dp�1(x)�rd(x)�n+1pd(x)��n;

(2)
and the minimizer or steady state solution of the gradient flow sat-
isfies the Euler-Lagrange equationdp�1(x)�rd(x) � n+ 1pd(x)�� = 0; (3)

wheren is the unit outward normal and� is the mean curvature.
We see a balance between the attractionrd(x) � n and the sur-
face tensiond(x)� in the equations above. Moreover the nonlinear
regularization due to surface tension has a desirable scaling d(x).
Thus the reconstructed surface is more flexible in the regionwhere
sampling density is high and is more rigid in the region wherethe
sampling density is low. In the steady state equation(3) above, sincerd � n � 1, we have a local sampling density condition similar to
the one proposed in [3], which says sampling densities should re-
solve fine features locally. To construct the minimal surface we
used a continuous deformation in [34]. We start with an initial sur-
face that encloses all data and follow the gradient flow (2). The
parameterp affects the flexibility of the membrane to some extent.

Whenp = 1, the surface energy defined in (1) has the dimension of
volume and the gradient flow (2) is scale invariant i.e., dimension-
less. In practice we find thatp = 1 or 2 (similar to a least squares
formulation) are good choices. Some more details can be found in
[34].

In two dimensions, it was shown in [34] that a polygon which
connects adjacent points by straight lines is a local minimum. This
result shows a connection between the variational formulation and
previous approaches. On the other hand this result is not surprising
since a minimal surface passing through two points is a straight line
in two dimensions. However in three dimensions the situation be-
comes much more interesting. The reconstructed minimal surface
has no edges and is smoother than a polyhedron.

Remark: The formulation here is similar to active contour mod-
els for image segmentation in [12, 11] and minimal surface model
in [33]. However the application, motivation and working mecha-
nism are quite different. In image segmentation, the final curves or
surfaces are wrapped along some edges, i.e., some continuous high
contrast contours on the grid and the contrast is already defined
on every grid point. In our application, we have arbitrary discrete
points and none of the distance contours to the data points isthe
final surface.

3 The Convection Model

The evolution equation (2) involves the mean curvature of the sur-
face and is a nonlinear parabolic equation. A time implicit scheme
is not currently available. A stable time explicit scheme requires a
restrictive time step size,�t = O(h2), whereh is the spatial grid
cell size. Thus it is very desirable to have an efficient algorithm to
find a good approximation before we start the gradient flow forthe
minimal surface. We propose the following physically motivated
convection model for this purpose.

The convection of a flexible surface� in a velocity fieldv(x) is
described by the differential equationd�(t)dt = v(�(t)):
If the velocity field is created by a potential fieldF , thenv =�rF . In our convection model the potential field is the distance
functiond(x) to the data setS. This leads to the convection equa-
tion d�(t)dt = �rd(x): (4)

For example, if the data set contains a single pointx0, the potential
field isd(x)=jx�x0j and the velocity field isv(x) = �rd(x) =� x�x0jx�x0j , a unit vector pointing towardsx0. Any particle in this
potential field will be attracted towardx0 along a straight line with
unit speed. For a general data setS, a particle will be attracted to
its closest point inS unless the particle is located an equal distance
from two or more data points. The set of equal distance pointshas
measure zero. Similarly, points on a curve or a surface, except those
equal distance points, are attracted by their closest points in the data
set (see Fig. 1(a)). The ambiguity at those equal distance points is
resolved by adding a small surface tension force which automati-
cally exists as numerical viscosity in our finite differenceschemes.
Those equal distance points on the curve or surface are dragged by
their neighbors and the whole curve or surface is attracted to the
data set until it reaches a local equilibrium, which is a polygon or
polyhedron whose vertices belong to the data set as the viscosity
tends to zero (see Fig.1(b)).

Here are some properties of this simple convection model: (1)
the normal velocity of the curve or the surface is less than orequal
to 1, (2) each point of the curve or surface is attracted by itsclosest
point in the data set.
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(a) the attraction of a piece of curve by two points, (b) dotted line
is the initial curve, solid line is the final curve, dashed line is the

Voronoi diagram.

Figure 1:

Figure 1(b) is an illustration of the convection of a curve.
The initial curve (the dotted rectangle) feels the attraction ofx1;x2;x3;x4 and closes in. Then it begins to feelx5. The fi-
nal shape is a pentagon that goes throughx1;x2;x3;x4 andx5
whilex6 is screened out.

Since the convection equation is a first order linear differen-
tial equation, we can solve it using a time step�t = O(h)
leading to significant computational savings over typical parabolic�t = O(h2) time step restrictions. The convection model by it-
self very often results in a good surface reconstruction. Insection
5 we will construct a very fast tagging algorithm that finds a crude
approximation of the local equilibrium solution for our convection
model.

4 The Level Set Formulation

In general we do not have any á priori knowledge about the topol-
ogy of the shape to be reconstructed. Topological changes may oc-
cur during the continuous deformation process. This makes explicit
tracking, which requires consistent parametrization, almost impos-
sible to implement. Here we use the level set method as a powerful
numerical technique for the deformation of implicit surfaces. Al-
though implicit surfaces have been used in computer graphics for
quite a while, they were mostly used for static modeling and were
based on discrete formulations [6]. Thelevel set method is based
on a continuous formulation using PDEs and allows one to deform
an implicit surface, which is usually the zero isocontour ofa scalar
(level set) function, according to various laws of motion depend-
ing on geometry, external forces, or a desired energy minimization.
In numerical computations, instead of explicitly trackinga mov-
ing surface we implicitly capture it by solving a PDE for the level
set function on rectangular grids. The data structure is extremely
simple and topological changes are handled easily. The level set
formulation works in any number of dimensions and the computa-
tion can easily be restricted to a narrow band near the zero level set,
see e.g. [1, 25]. We can locate or render the moving surface easily
by interpolating the zero isosurface of the level set function. The
level set method was originally introduced by Osher and Sethian in
[23] to capture moving interfaces and has been used quite success-
fully in moving interface and free boundary problems as wellas in
image processing, image segmentation and elsewhere. See [22] for
a comprehensive review.

Two key steps for the level set method are: (1) Embed the sur-
face: we represent a surface� as the zero isocontour of a scalar
(level set) function�(x), i.e. � = fx : �(x) = 0g. Geometric

properties of the surface� can be easily computed using�. (2)
Embed the motion: we derive the time evolution PDE for the level
set function such that the zero level set has the same motion law as
the moving surface, i.e.,�(t) = fx : �(x; t) = 0g,d�(�(t); t)dt = �t + d�(t)dt � r� = 0; (5)

where we replaced�(t)dt with the velocity ofx on � = fx :�(x; t) = 0g.
For geometric motions, i.e. where the motion law (velocity)de-

pends only on the geometry of the moving surface, the most natural
way to definev is to apply the same motion law for all level sets
of the level set function, which will result in a morphological PDE
[2]. For example, the gradient flow (2) is a geometric motion and
we usep = 1 for simplicity. After we extend the geometric motion
to all level sets, the gradient flow in level set formulation becomes@�@t = jr�jr � �d r�jr�j�= jr�j�rd � r�jr�j + dr � r�jr�j� ;

(6)
For the convection model (4), since the velocity field�rd(x) is

defined everywhere, we can naturally extend the convection to all
level sets of�(x; t) to obtain@�@t = rd(x) � r�: (7)

Although all level set functions are equally good theoretically,
in practice the signed distance function is preferred to avoid stiff-
ness and inaccuracy in numerical computations. However even if
we start with a signed distance function the level set function will
generally not remain a signed distance function. As an example, in
the convection model all level sets are attracted to the dataset si-
multaneously and they become more and more packed together.We
need a procedure to force them apart while keeping the zero level
set intact. We use a numerical procedure called reinitialization, see
e.g. [25, 29], to redistance the level set function locally without
interfering with the motion of the zero level set. As a resultthe
implicit surface is a signed distance function after the deformation
procedure stops.

5 Numerical Implementation

There are three key numerical ingredients in our implicit surface
reconstruction. First, we need a fast algorithm to compute the dis-
tance function to an arbitrary data set on rectangular grids. Second,
we need to find a good initial surface for our gradient flow. Third,
we have to solve time dependent PDEs for the level set function.

5.1 Computing the distance function

The distance functiond(x) to an arbitrary data setS solves the
following Eikonal equation:jrd(x)j = 1; d(x) = 0; x 2 S: (8)

From the PDE point of view, the characteristics of this Eikonal
equation are straight lines which radiate from the data set.This
reveals the causality property for the solution of the PDE, i.e., the
information propagates along straight lines from the data set, and
the solution at a grid point should be determined only by its neigh-
boring grid points that have smaller distance values. We usean
algorithm [9, 34] that combines upwind differencing with Gauss-
Seidel iterations of different sweeping order to solve (8) on rectan-
gular grids.



From numerical experiments it seems that the total number of
iterations is independent of mesh size, i.e. the complexityisO(M+N) for N grid points andM data points. The differences between
our algorithm and Danielsson’s distance mapping algorithm[14]
are (1) our data points are not grid points and that is why we have a
complexityO(M + N), (2) our algorithm can be applied to more
general equations whered(x) is not a distance, e.g., the right hand
side of 8 can be an arbitrary function inx. Our fast algorithm is
versatile, efficient and will be used in later stages of the surface
reconstruction.

5.2 Finding a good initial guess

We can use an arbitrary initial surface that contains the data set such
as a rectangular bounding box, since we do not have to assume any
á priori knowledge for the topology of the reconstructed surface.
However, a good initial surface is important for the efficiency of our
PDE based method. On a rectangular grid, we view an implicit sur-
face as an interface with some regularity that separates theexterior
grid points from the interior grid points. In other words, volumetric
rendering requires identifying all exterior (interior) grid points cor-
rectly. Based on this idea, we propose a novel, extremely efficient
tagging algorithm that tries to identify as many correct exterior grid
points as possible and hence provide a good initial implicitsurface.
As always, we start from any initial exterior region that is asubset
of the true exterior region.

All grid points that are not in the initial exterior region are
labeled as interior points. Those interior grid points thathave
at least one exterior neighbor are labeled as temporary boundary
points. Now we use the following procedure to march the tem-
porary boundary inward toward the data set. We put all the tem-
porary boundary points in a heapsort binary tree structure sorting
according to distance values. Take the temporary boundary point
that has the largest distance (which is on the heap top) and check
to see if it has an interior neighbor that has a larger or equaldis-
tance value. If it does not have such an interior neighbor, turn this
temporary boundary point into an exterior point, take this point out
of the heap, add all this point’s interior neighbors into theheap and
re-sort according to distance values. If it does have such aninte-
rior neighbor, we turn this temporary boundary point into a final
boundary point, take it out of the heap and re-sort the heap. None
of its neighbors are added to the heap. We repeat this procedure
on the temporary boundary points until the the maximum distance
of the temporary boundary points is smaller than some tolerance,
e.g. the size of a grid cell, which means all the temporary bound-
ary points in the heap are close enough to the data set. Finally, we
turn these temporary boundary points into the final set of boundary
points and our tagging procedure is finished. Now we have the final
sets of interior, exterior and boundary points. Since we visit each
interior grid point at most once, the procedure will be completed
in no more thanO(N logN) operations, wherelogN comes from
the heap sort algorithm. Moreover, since the maximum distance for
the boundary heap is strictly decreasing, we can prove that those
interior points which have a distance no smaller than the maximum
distance of the temporary boundary heap at any time will remain as
interior points, i.e. there is a non-empty interior region when the
tagging algorithm is finished. We can also show that at least one
of the final boundary points is within the tolerance distanceto the
data set. Similar tagging algorithms can also be applied to finding
interior regions and disconnected components of the final shape.

Figure 2 illustrates how our fast tagging algorithm works. Start-
ing from an arbitrary exterior region that is a subset of the final exte-
rior region, the furthest point on the temporary boundary istangent
to a distance contour and does not have an interior point thatis far-
ther away. The furthest point will be tagged as an exterior point and
the boundary will move inward at that point. Now another point on

the temporary boundary becomes the furthest point and hencethe
whole temporary boundary moves inward. After a while the tempo-
rary boundary is close to a distance contour and moves closerand
closer to the data set following the distance contours untilthe dis-
tance contours begin to break into spheres (circles in the 2Dfigure)
around data points. We now see that the temporary boundary point
at the breaking point of the distance contour, which is equally dis-
tant from distinct data points, will have neighboring interior points
that have a larger distance. So this temporary boundary point will
be tagged as a final boundary point by our procedure and the tempo-
rary boundary will stop moving inward at this breaking point. The
temporary boundary starts deviating from the distance contours and
continues moving closer to the data set until all temporary bound-
ary points either have been tagged as final boundary points orare
close to the data points. The final boundary is approximatelya a
polyhedron (polygon in 2D) with vertices belonging to the data set.

This general tagging algorithm can incorporate human interac-
tion easily by putting any new exterior point(s) or region(s) into our
tagged exterior region at any stage in our tagging algorithm. After
the tagging algorithm is finished we again use the fast distance al-
gorithm to compute a signed distance to the tagged final boundary.

The marching method (outlined above) requires an initial guess
for the exterior region. This can either be the bounding box of our
computational rectangular domain or an outer contour of thedis-
tance function,d(x) = �. An outer contour of the distance function
can be found by starting with the outer boundary of our rectangular
box, and expanding the exterior region by repeatedly tagging those
grid points which are neighbors of the expanding exterior bound-
ary and have a distance larger than� as exterior points. All re-
maining untagged grid points are interior points. When the tagging
algorithm is finished the boundary of the exterior region is approx-
imately the outer contour ofd(x) = � or roughly an� offset of
the real shape. When using thisd(x) = � method, first proposed
in [34], one needs to exercise caution in choosing�. For example,
if � is too small, we will have isolated spheres surrounding data
points. If the sampling density of the data points does not vary too
much and is fine enough to resolve all features, then we can findan
appropriate� and get a very good initial surface withO(N +M)
operations. For non-uniform data points the intersection of a bound-
ing box and a distance contour with moderate�, which is a simple
Boolean operation, often gives a good initial surface.

marching boundary

distance contour

data point

Figure 2:

5.3 Solving the partial differential equation.

After we find the distance functiond(x) and a good initial implicit
surface using the above algorithms, we can start the continuous



deformation following either the gradient flow (2) or the convec-
tion (4) using the corresponding level set formulation (6) or (7).
Our numerical implementations are based on standard algorithms
for the level set method. Details can be found in, for example,
[25, 33, 34]. The convection model is simple but the reconstructed
surface is close to a piecewise linear approximation. In contrast,
the energy minimizing gradient flow, which contains a weighted
curvature regularization effect, is more computationallyexpensive
but reconstructs a smooth weighted minimal surface. In particular,
the gradient flow can be used as a smoothing process for implicit
surfaces. In most of our applications, about one hundred time steps
in total are enough for our continuous deformation. Since weuse a
reinitialization procedure during the deformation, we finish with a
signed distance function for the reconstructed implicit surface.

5.4 Multiresolution

There are two scales in our surface reconstruction. One is the res-
olution of the data set. The other is the resolution of the grid. The
computational cost generally depends mainly on the grid size. To
achieve the best results those two resolutions should be comparable.
However our grid resolution can be independent of the sampling
density. For example, we can use a low resolution grid when there
is noise and redundancy in the data set or when memory and speed
are important. From our numerical results, see e.g., figure 9(c) our
reconstruction is quite smooth even on a very low resolutiongrid.
We can also use a multiresolution algorithm, i.e., reconstruct the
surface first on coarser grids and interpolate the result to afiner
resolution grid for further refinement in an hierarchical way.

5.5 Efficient storage

To store or render an implicit surface, we only need to recordthe
values and locations (indices) of those grid points that arenext to
the surface, i.e., those grid points that have a different sign from
at least one of their neighbors. These grid points form a thingrid
shell surrounding the implicit surface. No connectivity orother
information needs to be stored. We reduce the file size by at least
an order of magnitude by using this method. Moreover we can
easily reconstruct the signed distance function inO(N) operations
for the implicit surface using the following procedure. (1)Use the
fast distance finding algorithm to find the distance functionusing
the absolute value of the stored grid shell as an initial condition.
(2) Use a tagging algorithm, similar to the one used above to find
exterior points outside a distance contour, to identify allexterior
points and interior points separated by the stored grid shell and turn
the computed distance into the signed distance. For example, if
we store the signed distance function for our reconstructedHappy
Buddha from almost half a million points on a146 � 350 � 146
grid in binary form, the file size is about 30MB. If we use the above
efficient way of storage the file size is reduced to 2.5MB without
using any compression procedure and we can reconstruct the signed
distance function in 1 minute using the above algorithm .

6 Results

In this section we present numerical examples that illustrate the ef-
ficiency and quality of our surface construction. In particular we
show (1) the level set method handles surface deformation and topo-
logical change easily, (2) our fast tagging algorithm constructs a
good initial guess very quickly, (3) how smooth the reconstructed
surfaces are, (4) our algorithm works with non-uniform, noisy
or damaged data, and (5) multiresolution works in our formula-
tion. All calculations were done with dual Pentium III, 600Mhz
processors. Data points for the drill, dragon and the Buddha

Model Data Grid CPU CPU
points size (initial) (total)

Rat brain 1506 80x77x79 .12 3
Hand 327323 200x141x71 .5 10
Drill 1961 24x250x32 0.1 2

Dragon 437645 300x212x136 4 77
Dragon 100250 300x212x136 3 66
Buddha 543652 146x350x146 3 68
Buddha 543652 63x150x64 .3 7

Figure 3: timing table

were obtained from www-graphics.stanford.edu/data/3Dscanrep
and data points for the hand skeleton was obtained from
www.cc.gatech.edu/projects/largemodels. Only locations of the
data points are used in our reconstructions. Timings, number of data
points and grid size are shown in table 3. CPU time is measuredin
minutes. CPU (initial) is the time for the initial reconstruction us-
ing the distance contour and the fast tagging algorithm. CPU(total)
is the total time used for the reconstruction. Since our PDE based
algorithms are iterative procedures, different convergence criterion
will give different convergence times.

Figure 4 shows data points for a torus, a few curves (longitudes
and latitudes) on a sphere, data points from MRI slices for a rat
brain. Figure 5 shows the final surface reconstruction from the
above data. We see that the hole in the torus is filled nicely with
a minimal surface. For the sphere sphere reconstruction we only
provide the unsigned distance function to the curves which can be
viewed as an extreme case of non-uniform data. Since the datasets
in these three cases are quite non-uniform, we use either a bound-
ing box as the initial surface (in the case of torus and sphere) or the
intersection of a bounding box and an outer distance contourwith
relatively large�. (� = 12h in the case of the rat brain.)

For data sets that are fairly uniform, such as the drill, handskele-
ton, the dragon and the Buddha, we start with an outer distance
contour and use the fast tagging algorithm to get an initial recon-
struction. The initial reconstruction is extremely fast, as we can
see from table 3. After the initial reconstruction, we first use the
convection model and then use the gradient flow to finish the final
reconstruction. In our reconstruction, the grid resolution is much
lower than the data samples and yet we get final results that are
comparable to the reconstructions shown at those websites above.

Figure 6 shows the reconstruction of a hand skeleton. Figure7
is the reconstruction of a drill. It is a quite challenging example for
most methods for surface reconstruction as is shown in [13].Next
we show the reconstruction of a dragon on a300� 212� 136 grid
using a high resolution data in fig.8(a) and a much lower resolution
data in fig.8(b). We can barely see the difference. Figure 9 shows
the reconstruction of the Happy Buddha. Figure 9(a) shows the
initial reconstruction. We start with an outer distance contour,d =3h, initially and use the fast tagging algorithm. It takes 3 minutes
for half a million points on a146� 350 � 146 grid. Figure 9(b) is
the final reconstruction. Figure 9(c) is the reconstructionon a very
coarse63� 150� 64 grid using the same amount of data points. It
takes only 7 minutes and the result is quite good.

7 Conclusions

We present a variational and PDE based formulation for surface re-
construction from unorganized data. Our formulation only depends
on the (unsigned) distance function to the data and the final recon-
struction is smoother than piecewise linear. We use the level set
method as a numerical tool to deform and construct implicit sur-
faces on fixed rectangular grids. We use fast sweeping algorithms



for computing the distance function and fast tagging algorithms for
initial construction. Our method works for complicated topology
and non uniform or noisy data.
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[9] M. Boué and P. Dupuis. Markov chain approximations
for deterministic control problems with affine dynamics
and quadratic cost in the control.SIAM J. Numer. Anal.,
36(3):667–695, 1999.

[10] D.E. Breen, S. Mauch, and R.T. Whitaker. 3d scan conver-
sion of csg models into distance.1998 Volume Visualization
Symposium, pages 7–14, October 1998.

[11] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimalsur-
faces based object segmentation.IEEE Trans. Pattern Analy-
sis Machine Intelligence, 19:4:394–398, 1997.

[12] L.D. Cohen and I. Cohen. Finite-element methods for active
contour models and ballons for 2-d and 3-d images.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15(11):1131–1147, November 1993.

[13] B. Curless and M. Levoy. A volumetric method for building
complex models from range images.SIGGRAPH’96 Proceed-
ings, pages 303–312, 1996.

[14] P. Danielsson. Euclidean distance mapping.Computer
Graphics and Image Processing, 14:227–248, 1980.

[15] M. Desbrun and M.P. Cani-Gasceul. Active implicit surfaces.
Graphics Interface, 1998.

[16] H. Edelsbrunner. Shape reconstruction with Delaunay com-
plex. InProc. of LATIN’98: Theoretical Informatics, volume
1380 ofLecture Notes in Computer Science, pages 119–132.
Springer-Verlag, 1998.

[17] H. Edelsbrunner and E. P. Mücke. Three dimensional�
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Figure 4: initial data

hole filling of a torus reconstruction of a sphere from curves reconstruction of a rat brain from MRI slices

Figure 5: final reconstruction

(a) initial reconstruction (b) final reconstruction

Figure 6: reconstruction of a hand skeleton

Figure 7: reconstruction of a drill



(c) final reconstruction (d) low resolution reconstruction

Figure 8: reconstruction of the dragon

(a) initial reconstruction (b) final reconstruction (c) reconstruction on a coarse grid

Figure 9: reconstruction of the Happy Buddha


