
FAST AND SCALABLE METHODS FOR THE SIMULATION OF

INCOMPRESSIBLE FLOW

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Michael Anthony Lentine

May 2012

iv

Abstract

This dissertation presents efficient and scalable algorithms for the simulation of in-

compressible fluids. Physical simulation of fluids is one of the most interesting and

challenging problems because of the amount of small scale details that realistic fluids

exhibit. Although a large number of high fidelity simulations can be obtained with

existing techniques, the resolution that these techniques can obtain is limited by the

amount of computational power available. The simulation of incompressible flow has

two main aspects: advection and projection. This thesis addresses performance and

scalability issues related to both aspects and demonstrates a number of algorithms

that work to massively reduce the computational cost of simulations.

In the first chapters we concentrate on improving the performance and scalability of

fluid simulations by investigating new conservative advection methods based off the

established semi-Lagrangian method. Applying a conservative limiter to the typical

semi-Lagrangian interpolation step can guarantee that the amount of the quantity

being advected (e.g. mass, momentum, volume, etc.) does not increase. In addition,

a new second step can be utilized that forward advects any of the quantity that

was not accounted for in the typical semi-Lagrangian advection. Using this new

conservative semi-Lagrangian method, mass and momentum can be conservatively

advected in order to improve visual fidelity of smoke simulations at large time steps.

In addition to conserving momentum during advection, the commonly used vorticity

confinement turbulence model can be modified to exactly conserve momentum as

well. It is shown that this new method is amenable to efficient smoke simulation with

one time step per frame, whereas the traditional non-conservative semi-Lagrangian

v

method experiences serious artifacts when run with these large time steps, especially

when object interaction is considered.

This method is then extended for water simulation when taking large time steps

where, in contrast to smoke, an extrapolated velocity field is required. Inaccuracies

with the extrapolated velocity field are alleviated by not using it when it is incorrect,

which is determined via conservative advection of a color function that adds forwardly

advected semi-Lagrangian rays to maintain conservation when mass is lost. This

method is then coupled to the more visually appealing particle levelset method to

obtain both a visually appealing and accurate method for simulating water at large

time steps.

In the final chapters we discuss improving the performance and scalability of the pro-

jection step through the use of faster methods for the pressure solve. This technique

coarsens the Eulerian fluid grid during the pressure solve, allowing for a fast implicit

update but still maintaining the resolution obtained with a large grid. This allows

simulations to run at a fraction of the cost of existing techniques (∼60x faster) while

still providing the fine scale structure and details obtained with a full projection. This

algorithm scales well to very large grids and large numbers of processors, allowing for

high fidelity simulations that would otherwise be intractable.

vi

Acknowledgments

First, I would like to thank my advisor, Ron Fedkiw, for his support and encourage-

ment. He has been an inspiration over the years not only about how to do research

but about how to deal with life. I learned a lot from him in the last few years and

would not have been able to achieve what I have without his assistance and mentor-

ship. I would especially like to thank him for his commitment to working on high

impact and interesting problems even when others thought they were too hard or not

worth doing. This made my experience not only extremely fun as I got to work on the

things that I wanted to, but it also made me proud of what I was able to accomplish.

I would also like to thank my fellow group members who I have spent a lot of time with

over the years. I would like to thank my coauthors Andrew Selle, Jon Gretarsson,

Craig Schroeder, Avi Robinson-Mosher, Wen Zheng, Mridul Aanjaneya, Matthew

Cong, and Saket Patkar. I would especially like to thank Andy for introducing me

to the lab and providing a lot of useful guidance when I was first starting. It was

during this time that I realized that I was going to have a lot of fun during my time

at Stanford. I would also like to thank the other members of Ron’s lab who helped

make graduate school an extremely enjoyable experience. These are Tamar Shinar,

Jonathan Su, Nipun Kwatra, Elliot English, Linhai Qui, Rahul Sheth, Yue Yu, and

Bo Zhu. I would also like to acknowledge the CURIS students who helped our lab

out with a number of projects that I worked on including Joyce Pan, Jessica Liu, and

Adele Xu.

I also had the privilege of consulting at Industrial Light + Magic would like to thank

vii

those who I worked closely with including Brice Criswell, Frank Losasso Petterson,

Kim Libreri, Nick Rasmussen, Zoran Kacic-Alesic, Rick Hankins, Ian Sachs, Chris

Twigg, Cliff Ramshaw, Stephen Bowline, and Jeff Smith who all enriched my experi-

ence at Industrial Light + Magic. I would especially like to thank Brice and Kim for

providing me with unique opportunities that I would not have otherwise had.

I would also like to thank my reading committee consisting of Oussama Khatib and

Joseph Teran as well as my other committee members Pat Hanrahan and George

Papanicolaou for their time and effort.

I would also like to acknowledge Jessica Hodgins for introducing me to computer

graphics and working with me as an undergraduate researcher. Without her help and

guidance I wouldn’t be where I am today.

Finally, I would like to thank my family and friends especially my parents Anthony

and Nancy Lentine for their support as well Yanjing Li for always being there for

me.

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

2 Unconditionally Stable Conservative Advection 4

2.1 Introduction . 5

2.2 Conservative semi-Lagrangian method 9

2.2.1 Boundary conditions . 11

2.2.2 Interpolation . 13

2.2.3 Examples . 18

2.3 Incompressible flow . 26

2.3.1 Momentum-conserving scheme 27

2.3.2 Examples . 28

2.4 Treating kinetic energy . 31

2.4.1 Advection . 32

2.4.2 Projection . 32

2.4.3 Viscosity . 35

2.4.4 Examples . 36

2.5 Compressible flow . 44

2.5.1 Example . 46

2.6 Conclusion . 48

ix

3 Mass and Momentum Conservation 52

3.1 Introduction . 53

3.2 Advection . 56

3.2.1 Conservation . 57

3.2.2 Collisions . 59

3.3 Incompressible Flow . 60

3.3.1 Navier-Stokes Equations . 60

3.3.2 Vorticity Confinement . 61

3.4 Smoke Simulation . 62

3.5 Water Simulation . 67

3.6 Energy . 69

3.6.1 Tracking Energy . 70

3.7 Conclusion . 73

4 Volume Conservation 75

4.1 Introduction . 76

4.2 Free Surface Flows . 80

4.3 Taking Large Time Steps . 81

4.3.1 Problems With Extrapolation 81

4.3.2 Advection . 83

4.3.3 Projection . 84

4.4 Color Function . 84

4.5 Coupling . 88

4.6 Results . 91

4.7 Conclusion . 96

5 Coarse Grid Projection 97

5.1 Introduction . 97

5.2 Performance Analysis . 100

5.2.1 Scaling . 100

5.2.2 Multi-core and Multi-processor Machines 102

5.2.3 Multiphysics . 104

x

5.3 Making a Divergence Free Flow . 105

5.3.1 Navier-Stokes Equations . 105

5.3.2 Mapping to the Coarse Grid 106

5.3.3 Coarse Grid Projection . 108

5.3.4 Mapping to the Fine Grid . 109

5.3.5 Fine Grid Local Projections 110

5.4 Discussion . 112

5.5 Examples . 116

5.5.1 Smoke . 116

5.5.2 Water . 117

5.5.3 Timing . 118

5.6 Conclusions and Future Work . 120

6 Conclusions 123

Bibliography 125

xi

List of Tables

2.1 Convergence order is computed by taking the log2(ce/fe) where ce is

the error in the coarse resolution simualtion and fe is the error in the

fine resoltuion simulation. The order is averaged over all relevant points. 20

5.1 Timing information for our examples as well as base simulations on the

fine and coarse grid using both 1 processor and 64 processors. Some

large resolution simulations (noted by -) could not be run on a single

processor due to RAM restrictions. All of our timings are given in time

per frame/time per time step. Note that all examples were run at 24

frames per second and with a CFL number of 0.9. 120

xii

List of Figures

2.1 Standard semi-Lagrangian advection schemes cast rays either forward

or backward along characteristic lines in order to determine time tn+1

values at cell centers. We take advantage of this in our scheme, making

use of the computed weights wij and fij as appropriate. The notation

wij and fij denote the contribution that cell i gives to cell j over a time

step. 10

2.2 Error curve for the advected sine-wave “bump” in a constant velocity

field u = 1 at time t = 3s for linear and quadratic interpolation us-

ing our proposed conservative semi-Lagrangian advection scheme, run

with a CFL number .9. Using a higher-order interpolation scheme

gives noticeably reduced error; for example at ∆x = 5/256 the peak

error for the linear interpolation scheme is .111, while the quadratic

interpolation scheme has a peak error of .060. 15

2.3 Error curve for the advected sine-wave “bump” in a constant velocity

field u = 1 at time t = 3s for linear and quadratic interpolation using

our proposed conservative semi-Lagrangian advection scheme, run with

a CFL number 2.9. As there are no temporal errors (as any semi-

Lagrangian ray exactly captures the characteristic curve), all errors

are due to the application of an interpolation scheme. The larger CFL

number permits time steps almost three times larger than those taken

for Figure 2.2, and so the error introduced by the interpolation scheme

are significantly smaller. 16

xiii

2.4 Error curve for the advected sine-wave “bump” in a constant velocity

field u = 1 at time t = 9s for linear and quadratic interpolation using

our proposed conservative semi-Lagrangian advection scheme, run with

a CFL number 2.9. As there are no temporal errors (as any semi-

Lagrangian ray exactly captures the characteristic curve), all errors are

due to the application of an interpolation scheme. As such the number

of interpolations needed decreases as the CFL number increases, and

the error goes down proportionally. If we run the same simulation with

a larger CFL number and a proportionally longer period of time, the

errors become similar (see Figure 2.2). 17

2.5 A sine-wave “bump” is advected through a uniform velocity field.

Shown is the solution at time t = 3s. We apply the first order ver-

sion of both the standard semi-Lagrangian advection, as well we our

proposed conservative semi-Lagrangian advection scheme. 19

2.6 We consider the evolution of density in a velocity field that is speci-

fied by u(x) = sin
(
π x

5

)
. In such a velocity field, the standard semi-

Lagrangian approach fails to capture the rarefaction and converges to

a non-physical solution. This simulation is run with ∆x = 5/8192. . . 21

2.7 A square wave that evolves with a divergent velocity field u = sin
(
π x

5

)
.

Shown is the solution at time t = 3s. We apply the first order version of

both the standard semi-Lagrangian advection, as well as our proposed

conservative semi-Lagrangian advection scheme. In this example, we

see the standard semi-Lagrangian advection scheme converges to the

wrong solution. 22

2.8 Shown is the time history of
∑

i ∆xφ̂i for a square wave that is evolved

through a divergent velocity field with u = sin
(
π x

5

)
. Solutions for

both the standard semi-Lagrangian advection scheme and our pro-

posed conservative semi-Lagrangian advection scheme are shown at

high-resolution with ∆x = 5/8192. 23

xiv

2.9 After one full rotation of the Zalesak disk [124] using our proposed

conservative semi-Lagrangian advection scheme, for a variety of grid

resolutions. Shown is the .5 isocontour for grid resolutions ∆x = 2−7,

2−8, 2−9, 2−10, and 2−11, in addition to the analytic solution. The mass

of the disk is properly conserved using our method (this is verified in

Figure 2.10), while the standard semi-Lagrangian advection scheme

loses significant mass. In this light, our scheme can be thought of as

the conservative advection of a smeared-out Heaviside color function. 24

2.10 Shown is the time history of Σi∆xφ̂i + Σout − Σin for Zalesak Disk

with ∆x = 2−7. Time history for the standard semi-Lagrangian ad-

vection scheme is shown in red, while our proposed conservative semi-

Lagrangian advection scheme is shown in green. 25

2.11 Streamlines for the driven cavity example using standard semi-Lagrangian

advection, our proposed momentum-converging method, and our pro-

posed kinetic energy-conserving method. All simulations are run with

∆x = 2−7. 29

2.12 Stream-line visualization of flow past a sphere. 30

2.13 Total momentum fluxing into the computational domain and total mo-

mentum fluxing out of the computational domain, plotted as a func-

tion of time for a standard semi-Lagrangian scheme and our proposed

momentum-conserving scheme. 37

2.14 Pressure momentum flux into solid wall boundaries, and pressure mo-

mentum flux entering the computational domain from the inflow bound-

ary condition, plotted as a function of time for a standard semi-Lagrangian

scheme and our proposed momentum-conserving scheme. 38

2.15 Sum total of momentum in the domain, plus momentum fluxed out of

the domain (through outflow and solid wall boundaries), minus mo-

mentum fluxed into the domain (through inflow), plotted as a func-

tion of time for a standard semi-Lagrangian scheme and our proposed

momentum-conserving scheme. 39

xv

2.16 Total kinetic energy fluxing into the computational domain and to-

tal kinetic energy fluxing out of the computational domain, plotted

as a function of time for a standard semi-Lagrangian scheme, our pro-

posed momentum-conserving scheme, and our proposed kinetic energy-

conserving scheme. 40

2.17 Energy flux into solid wall boundaries, and energy flux entering the

computational domain from the inflow boundary condition, plotted

as a function of time for a standard semi-Lagrangian scheme, our pro-

posed momentum-conserving scheme, and our proposed kinetic energy-

conserving scheme. 41

2.18 Change in kinetic energy due to the pressure projection step away

from boundaries, plotted as a function of time for a standard semi-

Lagrangian scheme, our proposed momentum-conserving scheme, and

our proposed kinetic energy-conserving scheme. Note that in all three

schemes the change in momentum due to the pressure projection step

away from boundaries is zero. 42

2.19 Sum total of kinetic energy in the domain, plus kinetic energy fluxed

out of the domain (through outflow and solid wall boundaries), minus

kinetic energy fluxed into the domain (through inflow), plus kinetic

energy lost in the projection step away from boundaries, plotted as

a function of time for a standard semi-Lagrangian scheme, our pro-

posed momentum-conserving scheme, and our proposed kinetic energy-

conserving scheme. 43

2.20 Density profile of a SOD shock tube at t = .15s, as generated by the

scheme detailed in [54], using our new conservative semi-Lagrangian

scheme and a CFL number of .5. We zoom in to the box [.725, .775]×
[.1, .3], showing the shock front in greater detail and highlighting con-

vergence at the discontinuity. 47

xvi

2.21 Density profile of a SOD shock tube at t = .15s, as generated by the

scheme detailed in [54], using our new conservative semi-Lagrangian

scheme and a CFL number of 3. We zoom in to the box [.725, .775]×
[.1, .3], showing the shock front in greater detail and highlighting con-

vergence at the discontinuity. 48

2.22 Density profile of a SOD shock tube at t = .15s, as generated by the

scheme detailed in [54], using a third order MENO advection scheme

and a CFL number of .5. We zoom in to the box [.725, .775]× [.1, .3],

showing the shock front in greater detail and highlighting convergence

at the discontinuity. 49

2.23 Density profile of a SOD shock tube at t = .8s, as generated by the

scheme detailed in [54], using our new conservative semi-Lagrangian

scheme and a CFL number of .5. In order to capture this later time,

we extend the computational domain to x ∈ (−1, 2) and show only

x ∈ (1, 2) to illustrate shock front convergence. We zoom in to the box

[1.812, 1.932] × [.1, .3], showing the shock front in greater detail and

highlighting convergence at the discontinuity. 50

2.24 Density profile of a SOD shock tube at t = .8s, as generated by the

scheme detailed in [54], using our new conservative semi-Lagrangian

scheme and a CFL number of 3. In order to capture this later time,

we extend the computational domain to x ∈ (−1, 2) and show only

x ∈ (1, 2) to illustrate shock front convergence. We zoom in to the

box [1.812, .932]× [.1, .3], showing the shock front in greater detail and

highlighting convergence at the discontinuity. 51

xvii

3.1 A comparison between simulations of (Left) the traditional semi-Lagrangian

method and (Right) our method with a very large time step at resolu-

tion 256× 512× 256. Note how the large time steps cause alternating

gaps in the smoke as seen above and below the sphere. Also note the

lack of fluid structure resulting from the collision with the sphere. In

contrast, our method conserves mass and momentum and produces a

highly detailed flow field. Note in particular, the creation of multiple

distinct vortex rings that pass through each other using our method. 53

3.2 (Left) using the method from [58], incompressibility is not properly

enforced on coarse grids with large time steps and no viscosity. Note

the white line down the middle of the image where the smoke splits

apart, which occurs because of a lack of incompressibility during the

advection. (Right) our new method incorporates incompressibility into

advection, keeping the plume from splitting apart. 55

3.3 An example using our conservative advection method with smoke in-

jected from below simulated at one time step per frame using a high

CFL number (approximately 40) at resolution 256× 512× 256. . . . 63

3.4 An example using our conservative advection method with smoke in-

jected from below and a static sphere simulated at one time step

per frame using a high CFL number (approximately 40) at resolution

256× 512× 256. 64

3.5 A comparison between simulations of (Left) the traditional semi-Lagrangian

method and (Right) our method with a very large time step at resolu-

tion 256× 512× 256. Note how the large time steps yield poor inter-

polation resulting in alternating gaps in the smoke; this is especially

apparent slightly above the ground plane and in the large plume. Con-

serving the amount of smoke, as done by our method, does not produce

these artifacts. 65

xviii

3.6 A comparison between simulations of (Left) the traditional semi-Lagrangian

method and (Right) our method using a typical CFL of 1 at resolution

128× 256× 128. Note the large amount of mass lost when the smoke

interacts with the sphere as illustrated in Figure 3.7. 66

3.7 A comparison between four simulations at resolution 128× 256× 128.

The red and green lines are simulations using our conservative scheme.

Note that the difference in these at later frames is due to different

amounts of smoke exiting the domain as the simulations are different

with largely different time steps - but we stress that smoke is fully

conserved in both cases. Comparing the blue to the red, or similarly

the purple to the green shows the amount of mass loss suffered by the

traditional semi-Lagrangian method. Note that an appreciable amount

of mass is lost even before large amounts of smoke starts exiting the

domain. 66

3.8 Momentum advection during water simulation: shown are the semi-

Lagrangian rays used to advect phi values (green) and velocity values

(red). Note that when advecting the interpolated velocity value, 6 is

used if valid, otherwise 7 may be used. 68

3.9 A comparison between water simulations using (Left) the traditional

semi-Lagrangian method and (Right) our method at resolution 128×
256×128. Note the improvement in momentum seen using our conser-

vative method. In particular, the height of the splash is higher using

our method. Note that in this example our method has 25% more

momentum than the standard method. 68

xix

3.10 (Left) A simulation of energy conserving incompressible flow at reso-

lution 64 × 64 × 64. The initial flow field is created by starting with

upwards velocities in the center of the domain and zero elsewhere. The

flow is then made divergence free and simulated forward in time, and

we note that conserving energy provides a sustainable flow field for

long-time simulation as seen in Figure 3.11 (also see the video). Fish

models are passively advected to visualize the flow field. (Right) A sim-

ulation of energy conserving free surface flow at resolution 64×64×128.

The initial flow field is created by dropping a ball of water into a pool

of shallow water (viewed from top down). 71

3.11 A graph of energy as a function of time for the simulation in Fig-

ure 3.10. The red line shows that our method conserves energy almost

exactly for 1000 frames. Note that we do exactly conserve energy when

comparing two velocity fields before projection. However, projection

removes or adds a very small amount of energy as can be seen by the

wiggles in the red line. For comparison we also plot the results for

the same simulation using the traditional semi-Lagrangian method as

a green line, and note that the energy quickly dies out. 72

3.12 Two simulations using our method with energy conservation with smoke

injected from below at resolution 128×256×128. Note that no vorticity

confinement was added other than that used to conserve energy. Also

note that the resulting density field appears significantly less viscous

than the traditional semi-Lagrangian method which explicitly adds vor-

ticity confinement. 73

4.1 Water pouring into a box at a resolution of 5123. This example ran

with a CFL number ranging from 10-60 and demonstrates the large

amount of small scale details that can be achieved by using our method. 76

xx

4.2 Figure 4.2(a) shows the analytic solution for the canonical closest point

extrapolation scheme used in free surface flow simulation where the

velocity field in the “air” is determined by the closest point in the wa-

ter surface. This results in a velocity discontinuity along the curved

equidistant boundary between the green and grey shaded regions. Ev-

erything above this curve has a downward velocity obtained from grav-

ity acceleration of the falling drop whereas everything below this curve

has a stationary velocity of 0 obtained from the stationary liquid at the

bottom of the figure. For advection, the analytic solution using back-

wards cast semi-Lagrangian rays gives the result shown in Figure 4.2(b)

in blue (not yellow) where everything above the curve moves downward

and everything below the curve stays stationary. The actual analytic

solution is shown by the union of the blue and yellow regions in the

figure and we address the loss of mass depicted by the yellow region by

instead forward advecting all of that material. Of course one could for-

ward advect the entire drop but that leads to significantly less accuracy

in the blue region where backwards advection works well. 77

4.3 Assuming a velocity field directed diagonally downward and to the left

as depicted by the orange arrow, the correct volume information for

the green cell would be obtained from the brown shaded cell. Any

method which looks only in orthogonal directions would be limited to

ascertain information only from the grey shaded cells depicted in the

picture. One could imagine an alternating dimension by dimension

exhaustive approach that scans all 25 cells in the neighborhood in

order to eventually find the information in the brown cell, but the

semi-Lagrangian method is far more efficient. 79

xxi

4.4 Correcting Numerical Dissipation in the Color Function: Figure 4.4(a)

shows the color function after advection. Due to numerical dissipation,

there are regions inside the level set (φ ≤ 0) with a color function value

V = 1 (blue), V < 1 (cyan), and V > 1 (magenta) along with regions

outside the level set (φ > 0) with a color function value V = 0 (black)

and V > 0 (green). Figures 4.4(b), 4.4(c), and 4.4(d) demonstrate

the results after applying our first, second, and third compression step

respectively. We then apply a volume-conserving diffusion algorithm

which corrects for errors in compression (usually located in regions

of high curvature) to obtain a more accurate color function surface

representation shown in Figure 4.4(e). 86

4.5 Figure 4.5(a) shows the result we get after taking a large time step

using the PLS method. Because closest-point extrapolation discussed

in 4.3.1 is unable to provide a good approximation of the velocities in

the air region, backward semi-Lagrangian advection fails to accurately

advect the level set causing the ball to become clipped at the bottom.

Figure 4.5(b) shows the same frame using our method where we are

able to reconstruct and subsequently maintain the shape of the ball

even when taking a very large time step. 89

4.6 Sphere of water dropped onto a stationary flat surface of water at a

resolution of 2563. This example ran with a CFL number ranging from

10-40. The early part of the simulation when the water first starts to

fall was simulated with a smaller CFL number. The later parts of the

simulation were ran with a higher CFL number. 91

4.7 Dam break water example at a resolution of 2563. This example ran

with a CFL number ranging from 10-40. The early part of the simu-

lation when the water first starts to fall under the influence of gravity

was simulated with a smaller CFL number. The later parts of the

simulation were ran with a higher CFL number. 91

xxii

4.8 Water pouring into a box from two opposite-facing sources at a res-

olution of 2563. This example ran with a CFL number ranging from

10-40. The earlier section of the simulation when the sources are first

activated until the water first hits the bottom of the container was

simulated with a smaller CFL number. The more active parts of the

simulation which occur after the water from the sources hits the bottom

of the container were ran with a higher CFL number. 92

4.9 Water pouring into a box over a rigid sphere at a resolution of 2563.

This example ran with a CFL number ranging from 10-40. The earlier

section of the simulation from when the source is first activated until

the water first hits bottom of the container and the later section after

the source was turned off and the water starts to calm were simulated

with a smaller CFL number. The more active parts of the simulation

which occur between the water from the source hitting the bottom of

the container and the source turning off were ran with a higher CFL

number. 92

4.10 Water pouring into a box from two opposite-facing sources at a res-

olution of 5123. This example ran with a CFL number ranging from

10-60. The earlier section of the simulation when the sources are first

activated until the water from the sources collides was simulated with

a smaller CFL number. The remainder of the simulation was ran with

a higher CFL number. Note that we increase the amount of absorption

during rendering in order to make the fine scale details more apparent. 93

xxiii

4.11 Comparisons between our method and the particle level set method us-

ing similar amounts of computation. The left figure shows the correct

answer obtained by running the particle level set algorithm at a resolu-

tion of 2563 at CFL 1. The middle figure shows the results of running

our algorithm at a resolution of 2563 at CFL 16. This requires a similar

amount of computation to running the particle level set method at a

resolution of 1283 at CFL 1 which gives the results shown in the right

figure. Our algorithm has the same degree of numerical viscosity as the

2563 particle level set simulation but requires the same amount of com-

putation as the 1283 since the resolution is doubled in each dimension

and the CFL condition becomes twice as strict. 94

4.12 Volume vs. time for four different simulations. The red and blue lines

represent the liquid volume present in the dam break simulation at

frame rate. Notice how our method (red) fully conserves volume while

the PLS algorithm (blue) loses a tremendous amount of volume. The

green and purple lines represent the volume present in a simulation

with water from a source flowing over a ball. Notice how the volume

increases linearly until the source is turned off when using our method

(green) but decreases slowly when using the PLS algorithm (purple). 95

5.1 Smoke flowing around a moving sphere with on a 512×1024×512 grid.

(Left) uses a CFL number of 0.9 and takes time steps half as large as

those generally taken on a 256 × 512 × 256 grid. (Right) uses a CFL

number of 2.2 making the time steps around 2.5 times as large. . . . 102

5.2 A refined grid with four coarse cells. (a) A coarse cell with no refine-

ment. (b) A coarse cell with an octree inside (c) A coarse cell with a

uniform grid inside. (d) A coarse cell with multiple levels of uniform

grids inside. 107

5.3 A comparison between (Left) a simulation using our method with a

fine resolution of 64× 128× 64 and a coarse resolution of 16× 32× 16

and (Right) without using our method on a 16× 32× 16 grid. . . . 113

xxiv

5.4 A 2D smoke simulation run with a 128× 128 base grid. (a) is a simu-

lation on a 128 × 128 fine grid and a 64 × 64 coarse grid using inter-

polation. (b) is our method using a 128× 128 grid and a 64× 64 grid

for projection. (c) is a base simulation on a 128 × 128 grid. (d) is a

simulation on a 256 × 256 fine grid and a 128 × 128 coarse grid with

interpolation. (e) is our method using a 256×256 grid with a 128×128

grid for projection. 114

5.5 A quantitative comparison of our technique and a standard fluid sim-

ulation. (Left) Our technique with a 128× 256 fine grid and a 32× 64

coarse gird. (Center) The base simulation with a 128 × 256 grid.

(Right) A comparison of the velocities between the two techniques.

The warmer colors illustrate bigger differences. The maximum veloc-

ity error is about 1%. 115

5.6 An example with smoke flowing around a static sphere. The large

figure is a 512×1024×512 simulation with a 64×128×64 coarse grid.

The smaller figures are comparisons of a simulation using different grid

resolutions. The resolutions are starting from the left to right, top to

bottom: a 512 × 1024 × 512 simulation with a 64 × 128 × 64 coarse

grid, a 256× 512× 256 simulation with a 64× 128× 64 coarse grid, a

128×256×128 simulation with a 64×128×64 coarse grid, a 64×128×64

base simulation, a 64× 128× 64 simulation with a 32× 64× 32 coarse

grid, and a 64 × 128 × 64 simulation with a 16 × 32 × 16 coarse grid

with Kolmolgorov noise. 117

xxv

5.7 An example with smoke flowing around a moving sphere. The Large

figure is a 512×1024×512 simulation with a 64×128×64 coarse grid.

The smaller figures are comparisons of a simulation using different grid

resolutions. The resolutions are starting from the left to right, top to

bottom: a 512 × 1024 × 512 simulation with a 64 × 128 × 64 coarse

grid, a 256× 512× 256 simulation with a 64× 128× 64 coarse grid, a

128×256×128 simulation with a 64×128×64 coarse grid, a 64×128×64

base simulation, a 64× 128× 64 simulation with a 32× 64× 32 coarse

grid, and a 64 × 128 × 64 simulation with a 16 × 32 × 16 coarse grid

with Kolmolgorov noise. 118

5.8 An example with water pouring into a box. This is a comparison of a

simulation using different grid resolutions. The resolutions are starting

from the left to right, top to bottom: a 512 × 512 × 512 simulation

with a 128× 128× 128 coarse grid, a 256× 256× 256 simulation with

a 128 × 128 × 128 coarse grid, a 128 × 128 × 128 base simulation, a

128 × 128 × 128 simulation with a 64 × 64 × 64 coarse grid, and a

128× 128× 128 simulation with a 32× 32× 32 coarse grid. 119

xxvi

Chapter 1

Introduction

Physical simulation of fluids is one of the most interesting and challenging problems

in computer graphics because of the large amount of small scale details that can

be obtained. There are two primary approaches to fluid simulation: Lagrangian

and Eulerian. Eulerian or grid based methods have been used by many authors

including [29, 105, 25] and work by laying down a grid fixed in space in which fluid

will move through. Each cell in this grid then tracks various quantities such as smoke

density, surface distance and velocity in order to simulate fluid flow. Lagrangian

methods in contrast represent the fluid as a set of particles moving through space

(see e.g. [96, 17, 85]). Each particle then stores the equivalent quantities such as

velocity. However, particles do not store the representation of the surface and thus

additional computational costs are incurred in order to keep track of a surface and

the re-mesh. Furthermore, it is difficult to enforce incompressibility which leads to

either weakly compressible formulations which become computationally expensive

near the incompressible limit or the use of grid based methods in order to satisfy

incompressibility. For these reasons this thesis focuses on grid based methods for

fluid simulation.

In order to achieve small scale details, relatively fine scale resolutions must be used.

However, the increased in computational cost often makes this intractable. In fact,

1

2 CHAPTER 1. INTRODUCTION

when refining the resolution of a grid by a factor of two, the computational expense

increases by a factor of sixteen, two for each spatial dimension and another two for

time. This thesis aims to alleviate these costs by presenting fast and scalable algo-

rithms for the simulation of incompressible flow. The simulation of incompressible

flow has two main aspects: advection and projection. Advection involves moving the

fluid through space and is relatively cheap compared to projection (typically taking

around 10% of the total simulation time) and the projection step enforces the incom-

pressibility condition of the fluid and is quite expensive. However, while projection

can run at arbitrarily large time steps without any loss of accuracy, the advection

step has an imposed time step restriction based on the fluid velocity. Typically this

is enforced by restricting the time step so that information cannot travel more than

one grid cell in any given time step. While it is possible with existing methods to

achieve slightly higher time step sizes, taking large time steps of more than a few grid

cells results in large errors in accuracy.

In order to address the loss of accuracy, chapter 2 presents a new conservative ad-

vection method based off the established semi-Lagrangian method [105]. Applying a

conservative limiter to the typical semi-Lagrangian interpolation step can guarantee

that the amount of the quantity being advected (e.g. mass, momentum, volume, etc.)

does not increase. In addition, a new second step can be utilized that forward ad-

vects any of the quantity that was not accounted for in the typical semi-Lagrangian

advection. Chapter 3 then introduces a number of modifications to this algorithm

which are used to conservatively advect mass and momentum in order to improve the

visual quality of smoke when using large time step sizes. In addition to conserving

momentum during advection, the commonly used vorticity confinement turbulence

model can be modified to exactly conserve momentum as well. It is shown that this

new method is amenable to efficient smoke simulation with one time step per frame,

whereas the traditional non-conservative semi-Lagrangian method experiences serious

artifacts when run with these large time steps, especially when object interaction is

considered. Chapter 4 then extends this method for water simulation when taking

large time steps where, in contrast to smoke, an extrapolated velocity field is required.

3

Inaccuracies with the extrapolated velocity field are alleviated by not using it when

it is incorrect, which is determined via conservative advection of a color function that

adds forwardly advected semi-Lagrangian rays to maintain conservation when mass

is lost. This method is then coupled to the more visually appealing particle levelset

method to obtain both a visually appealing and accurate method for simulating water

at large time steps.

This thesis also addresses projection which takes the majority of the time in a sim-

ulation but can be run with arbitrarily large time steps without loss of accuracy.

Chapter 5 introduces a new method which improves the performance of the pres-

sure solve needed to make the velocity field divergence free. This technique uses two

separate grids for simulation, the main fluid grid which is used for advection and a

coarsened version of the fluid grid which is used as part of the new projection method.

Before the pressure is solved for, the velocities are mapped from the main simulation

grid to the coarse projection grid. The pressure is then solved for on the coarse grid

which updates the coarse velocities. Subsequently, the velocities are then mapped

onto the simulation grid creating a incompressible fine scale velocity field. This al-

lows simulations to run at a fraction of the cost of existing techniques (∼60x faster)

while still providing the fine scale structure and details obtained with a full projec-

tion. This algorithm scales well to very large grids and large numbers of processors,

allowing for high fidelity simulations that would otherwise be intractable.

Chapter 2

Unconditionally Stable

Conservative Advection

Semi-Lagrangian methods have been around for some time, dating back at least to

[15]. Researchers have worked to increase their accuracy, and these schemes have

gained newfound interest with the recent widespread use of adaptive grids where the

CFL(CourantFriedrichsLewy)-based time step restriction of the smallest cell can be

overwhelming. Since these schemes are based on characteristic tracing and interpo-

lation, they do not readily lend themselves to a fully conservative implementation.

However, in this chapter, we propose a novel technique that applies a conservative

limiter to the typical semi-Lagrangian interpolation step in order to guarantee that

the amount of the conservative quantity does not increase during this advection. In

addition, we propose a new second step that forward advects any of the conserved

quantity that was not accounted for in the typical semi-Lagrangian advection. We

show that this new scheme can be used to conserve both mass and momentum for in-

compressible flows. For incompressible flows, we further explore properly conserving

kinetic energy during the advection step, but note that the divergence free projec-

tion results in a velocity field which is inconsistent with conservation of kinetic energy

4

2.1. INTRODUCTION 5

(even for inviscid flows where it should be conserved). While this thesis is mostly con-

cerned with incompressible flows, we also demonstrate that our new method can be

applied to compressible flow problems. For compressible flows, we rely on a recently

proposed splitting technique that eliminates the acoustic CFL time step restriction

via an incompressible-style pressure solve. Then our new method can be applied

to conservatively advect mass, momentum and total energy in order to exactly con-

serve these quantities, and remove the remaining time step restriction based on fluid

velocity that the original scheme still had.

2.1 Introduction

The idea of applying the method of characteristics to advect quantities forward in

time dates back at least as far as [15] and has gained popularity in many areas,

such as atmospheric sciences [107]. Although the simplest schemes trace back along

straight line characteristics and use low order interpolation to estimate the data,

one can trace back arbitrarily high order curved characteristics and use arbitrarily

high order interpolation, see for example [81]. The simplicity of these schemes makes

them quite useful for adaptive grids and other data structures, see for example [21,

69, 68, 108, 43]. Recently, authors have considered using semi-Lagrangian methods

as building blocks in other schemes, for example [46, 47, 19] showed that the second

order accurate BFECC method of [18] can be made unconditionally stable using the

first order accurate semi-Lagrangian method as a building block. In addition, [101]

showed that the original scheme of MacCormack [75] can be made unconditionally

stable in a similar way. A notable feature of the semi-Lagrangian method is that

it relieves the time step restriction. This is part of the reason why it has received

such interest from the atmospheric sciences community [61, 64, 62, 125], as well as

the compressible flow community [63, 98] where the acoustic time step restrictions

can be severe. We refer the reader to a particularly interesting body of work that

considers a number of methods for making semi-Lagrangian schemes conservative,

considering one spatial dimension, multiple spatial dimensions with splitting, multiple

6CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

spatial dimensions without splitting, and even obtaining conservation from a non-

conservative form [112, 119, 86, 118, 111].

Intuitively, the idea behind a fully conservative semi-Lagrangian scheme is simply to

advect the conserved quantities along characteristic paths in a way that is careful

to respect conservation. Many numerical methods are based on this principle, for

example SPH methods push around chunks of mass, momentum and energy assigned

to particles, and have been used to solve both compressible and incompressible flows,

including flows with shock waves, see for example [33, 74, 53, 52, 121, 16, 14, 66,

71, 93, 34]. In fact, the idea of pushing around conserved quantities is the basis

for volume of fluid methods, which attempt to conserve volume (see for example

[92, 97, 65, 39, 67, 126]). In addition, ALE methods also push material around using

a moving grid, and some of those methods use a background grid along with a two-

step procedure where the material is first advected forward on a moving grid, and

then remapped or redistributed to the background mesh in a conservative fashion,

see for example [40, 76, 72, 73, 13]. Obviously this idea of pushing around mass in a

conservative way respecting propagational characteristics for the sake of consistency

has received quite a bit of attention.

Notably, our method is quite simple, both conceptually and as far as implementation

is concerned—it requires only a small modification to a standard semi-Lagrangian

scheme and utilizes most of the functionality already present. The standard semi-

Lagrangian method updates the value at a grid point by tracing a possibly curved

characteristic backwards in time to find its point of origin, interpolating the surround-

ing data to that point, and placing the result of the interpolation at the original grid

point. In this manner, a grid point is updated with a linear combination of data from

other points. One can view this as placing some fraction of the data from other grid

points at this point, and then consider what this means from the point of conservation

of this data. Considering the grid as a whole, each grid point traces back some char-

acteristic and obtains some fraction of data stored at other grid points. One can see

that the scheme is not conservative, since certain grid points contribute to multiple

interpolations and the sum of all the weights from that grid point to all the points

2.1. INTRODUCTION 7

where the interpolations were performed can be larger than one. This means that

the data contained at the grid point has been over-depleted, violating conservation.

Similarly, some grid points may not be asked for any of their data at all, or the sum

of the inquisitive weights may be less than one. This also violates conservation, in the

sense that data has been left at that grid point and not advected forward. Of course,

we could simply account for this data by leaving it at that grid point, but then the

scheme would be inconsistent as this data needs to be advected forward. We note

that it is trivial to cure both of these pathologies in the semi-Lagrangian scheme by

simply ensuring that the sum of the interpolation weights from every point adds to

one, and that any data that wasn’t advected forward is pushed forward in our second

semi-Lagrangian step.

To summarize, we make the following modifications to a standard semi-Lagrangian

method. Each grid point is thought of as a control volume, containing a certain

amount of conserved quantity similar to any other conservation law solver. We trace

back the potentially curved semi-Lagrangian rays in the usual manner, perform the

interpolation in the usual manner, but add the additional step of recording all the

interpolation weights for every grid point so that we may check whether or not they

are equal to one. Our first correction requires sweeping through the grid, identifying

any grid node which has been asked for more information than it contains (i.e. sum

of the weights is greater than one), and subsequently scaling down these weights such

that their sum is exactly equal to one. Then these corrected weights are used in place

of the standard weights in the semi-Lagrangian advection scheme. At this point,

the standard semi-Lagrangian scheme is completed, however as mentioned above, we

have not advected all of the conserved quantity forward in time. Thus, for each

grid point whose weights sum to less than one, we need to advect the remaining

conserved data forward in time for consistency. This is done via a second application

of the semi-Lagrangian method starting at that grid point and tracing a potentially

curved characteristic forward in time, to see where it lands (exactly opposite of the

standard semi-Lagrangian method). The remaining data at that point is placed at its

new location, however this new location will not lie at a grid point but will instead

8CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

lie inside some grid cell. We distribute the remaining data to the surrounding grid

points by noting that the transpose of an interpolation operator is a conservative

distribution operator. That is, we simply calculate the interpolation weights at the

new point, just as one would in a standard semi-Lagrangian interpolation, and use

those weights to determine how much of the quantity is distributed to each of the

surrounding points. Notably, the building blocks for the second step already exist in

most implementations, only the tracing of a characteristic and the computation of

interpolation weights are needed in the algorithm.

In this chapter, we consider the application of our method to both incompressible and

compressible flow. As far as mass is concerned, treating a variable-density incompress-

ible flow and the density equation in compressible flow requires only straightforward

application of the method. As far as momentum and energy are concerned, we take

an approach which is similar for both incompressible and compressible flows. In par-

ticular we use the method of [54] in order to solve the compressible flow equations

in a way that requires an advection step followed by a pressure solve similar to in-

compressible flow, but which contains an identity term since pressure is based on

the time dependent pressure evolution equation. Thus, both methods consist of a

conservative advection step, followed by an implicit solve for the pressure, and a final

pressure correction step. In the case of incompressible flow, our new semi-Lagrangian

method can be used to exactly conserve the momentum of the fluid, and if the pres-

sure correction is viewed as a flux, then one can conserve momentum in that step as

well. In addition, we show how to account for stationary walls and potentially mov-

ing solid object boundaries. The treatment for compressible flow is similar, except

mass, momentum and energy are conservatively advected with our semi-Lagrangian

scheme before the pressure is solved for and the correction is applied. We show how

to apply the pressure correction in such a way so that both the momentum and total

energy are conserved, especially near solid walls and object boundaries. Finally, we

note that a conservation style equation can be formulated for the kinetic energy of

an incompressible flow. This equation is similar to that for compressible flow, with

total energy replaced by kinetic energy along with the appearance of a source term

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 9

for losses due to viscosity. Although our scheme can be used to conservatively advect

kinetic energy, and accounting for the viscous source term is straight-forward, the

pressure projection step is inconsistent with the conservation of kinetic energy and

therefore the resulting divergence-free velocity field disagrees with that predicted by

kinetic energy conservation. We provide some analysis of this along with quantitative

results.

2.2 Conservative semi-Lagrangian method

We begin by discussing the standard semi-Lagrangian method as applied in the sim-

plest case of a passively advected scalar φ, in a velocity field ~u,

φt + ~u · ∇φ = 0. (2.1)

Combining this equation with conservation of mass, ρt + ∇ · (ρ~u) = 0, leads to the

conservative form of the same equation:

(ρφ)t +∇ · (φρ~u) = 0. (2.2)

For the sake of exposition, we define φ̂ = ρφ as the conserved quantity; this allows

us to interchangeably talk about φ, the passively advected scalar, and φ̂, the con-

served quantity. For each grid point ~xj, the semi-Lagrangian method would trace a

potentially curved characteristic ray backward in time to some position ~x, and use an

interpolation kernel to obtain a value of φ̂ at ~x. This value is then used as φ̂(~xj, t
n+1).

The first order accurate case is illustrated by Figure 2.1(a), where a straight line

characteristic is traced backward in time from cell 5 to find ~x in-between cells 1, 2, 3

and 4. In equation form, this is given by

φ̂(~xj, t
n+1) = φ̂(~x, tn) =

∑
i

wijφ̂(~xi, t
n), (2.3)

10CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

(a) Cell 5 casts a ray backward, −∆t~u, which
lands between cells 1, 2, 3 and 4. Using a
standard bilinear interpolation scheme, the
weights are calculated to be w15 = .125,
w25 = .375, w35 = .125, w45 = .375.

(b) Cell 5 casts a ray forward, ∆t~u, which
lands between cells 1, 2, 3 and 4. We again
use standard bilinear interpolation, giving
forward-cast weights f51 = .06, f52 = .24,
f53 = .14, f54 = .56.

Figure 2.1: Standard semi-Lagrangian advection schemes cast rays either forward
or backward along characteristic lines in order to determine time tn+1 values at cell
centers. We take advantage of this in our scheme, making use of the computed weights
wij and fij as appropriate. The notation wij and fij denote the contribution that cell
i gives to cell j over a time step.

where wij are interpolation weights such that ~x =
∑

iwij~xi. Dimension-by-dimension

linear interpolation yields a first order method. Notably,
∑

j wij = 1 for any consistent

interpolation operator, regardless of the size of the stencil or order of accuracy.

After updating φ̂ at every grid point, we can then define the total contribution from

cell i to the time tn+1 data as σi =
∑

iwij, noting that this is not expected to sum

to 1 due to numerical truncation errors. In fact, since φ̂ is conserved as shown in

Equation (2.2), in order to exactly conserve data during the semi-Lagrangian update,

σi should be exactly 1. Fixing this is the key idea of our numerical method. This is

accomplished by visiting each donor grid cell i, examining σi, and scaling down the

weights wij to ŵij = wij/σi when σi ≥ 1, which guarantees explicitly that we do not

artificially create φ̂.

Next we treat the cells for which σi < 1. At these cells we apply a second pass of the

standard semi-Lagrangian scheme, casting rays forward, as illustrated for a first order

accurate method in Figure 2.1(b), yielding forward-cast weights fij. Noting that the

transpose of an interpolation operator is a conservative distribution operator, we use

these weights fij to distribute the remaining φ̂, i.e. (1 − σi)φ̂i, to the cells j used

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 11

to perform the interpolation. This can be seen as incrementing the unclamped wij

weights from the first step by an amount equal to (1−σi)fij, so that the final weights

are ŵij = wij + (1− σi)fij. Our update is then given as

φ̂n+1
j =

∑
i

ŵijφ̂(xi, t
n). (2.4)

At the end of our two applications of the standard semi-Lagrangian steps, we now

have modified weights ŵij to satisfy
∑

i ŵij = 1. That is, every cell on the grid

contributes exactly everything it has at time tn to the time tn+1 solution along the

characteristic lines which pass through the cell.

To summarize, when σi ≥ 1, we clamp the wij to obtain ŵij = wij/σi; using these new

ŵij weights leads to σi = 1. Otherwise if σi < 1, we forward advect the non-advected

data at each grid point and use it’s placement to calculate the new weights ŵij which

also lead to σi = 1. We note that in the σi ≥ 1 case, one could also forward advect and

interpolate. In this fashion, one would be advecting negative material to cancel out

the excess of positive material that was advected by the first semi-Lagrangian step.

However, when this negative material is place at surrounding grid nodes using the fij

weights, it is possible for the target grid node xj to lose more of the conserved quantity

than it originally had. Thus, for now, we only consider the method of clamping even

though it seems to limit the method to first order accuracy.

2.2.1 Boundary conditions

In the application of our method, we consider a number of different boundary con-

ditions. For open boundaries, inflow and outflow are treated by adding and filling

the appropriate number of ghost cells. For inflow boundary conditions, rays which

extend out of the domain are treated in the standard semi-Lagrangian fashion, and

the amount of material donated from ghost cells to points interior to the domain is

considered to be our inflow. One could modify the inflow scheme to not simply per-

form semi-Lagrangian interpolation but instead conservatively advect the sum of the

12CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

ghost cell data, however this requires careful accounting since, as ghost cells, some of

these are not solved for.

Unlike the standard scheme where only interior points need to be updated, our outflow

boundaries require evaluation of ghost nodes in the numerical scheme to ensure that

they withdraw the correct amount of φ̂ from the interior of the grid. Moreover one

needs to ensure that enough ghost cells are updated, such that the information is

correctly withdrawn from the interior of the domain. After clamping, one also needs

to consistently advect data from interior nodes to ghost cells when σi < 1.

Throughout the chapter, we measure our conservation error at time tn using the

following equation:

Error(tn) = Σφ̂(tn)−
[
Σφ̂(t0) + Σin − Σout

]
, (2.5)

where the first term on the right-hand side represents the current amount of φ̂ on

the grid and the second term represents the initial amount. These should only vary

through inflow and outflow which are represented by the third and fourth terms.

When updating φ̂n+1
i from φ̂n, if a semi-Lagrangian ray reaches back to ghost cells and

pulls information into the domain, then we track that for the Σin term. If information

is transported from the interior of our grid to the ghost cells, we track that for the

Σout term. That is, ŵij’s which contribute to a ghost cell j are accounted for in Σout.

There is rich literature on treating inflow and outflow boundary conditions for fluid

flows, and we imagine that many variations of our method could be designed in such

a way that is consistent with our treatment of the interior of the domain. However,

we found this sufficient for our examples.

Near solid walls and moving object boundaries, one must be careful not to interpolate

across or into the wall or object. All rays that are cast are done in a collision-aware

manner, stopping any rays early if they would pass through the interface, similar to

the computational geometry approach detailed in the computer graphics literature

(see e.g. [37]). Typically, when performing interpolation as in [37] we use informa-

tion from the solid, such as its velocity. However, that would transfer information

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 13

from the solid to the fluid, for example, during momentum advection one would be

interpolating momentum from the solid. This is non-physical since advection should

not transport conserved quantities across material interfaces. Any transmission of

momentum from the solid to the fluid should instead occur when considering the

acoustic characteristics, for example when solving for the pressure (which we con-

sider later). Thus, for our scheme we simply set wij = 0 for any interpolation point

which is not visible. At this point one could consider scaling up the remaining weights

to get interpolation weights such that Σiwij = 1, although we have not experimented

numerically with this option. Finally, in the forward-casting step of the scheme, in

order to guarantee conservation we set fij = 0 if cell j is not visible from the interpo-

lation point, and the remaining weights are then scaled up to account for the missing

material.

2.2.2 Interpolation

For our new conservative semi-Lagrangian approach we require an interpolation scheme

to determine the weights. A simple method uses linear weights between the nearest

points as shown in Figure 2.1. While this works rather well for conserving energy

as well as converging to the correct solution, the interpolation error can be reduced

through the use of higher order interpolation. Consider for example quadratic in-

terpolation. If our point of interest x lies between cells i and i + 1, then we have

available two valid quadratic functions: a left-biased one which interpolates across

the range (xi−1, xi, xi+1), and a right-biased one that interpolates across the range

(xi, xi+1, xi+2). The left-biased quadratic produces weights for an interpolated point

x as:

αi−1,L =
x̄(x̄− 1)

2
, αi,L = 1− x̄− x̄(x̄− 1), αi+1,L = x̄+

x̄(x̄− 1)

2

while the right-biased quadratic produces weights for an interpolated point x as:

αi,R = 1− x̄+
x̄(x̄− 1)

2
, αi+1,R = x̄− x̄(x̄− 1), αi+2,R =

x̄(x̄− 1)

2

14CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

where x̄ = (x − xi)/∆x. While sufficient for a standard semi-Lagrangian scheme,

these interpolations will produce negative weights on the outlying cells (i− 1 for the

left-biased one, i+ 2 for the right-biased one) when xi < x < xi+1. To alleviate these

negative weights we instead always zero the weight on the outlying cell and push

the missing contribution inward. That is, for the left-biased polynomial the weights

would be

α̃i−1,L = 0, α̃i,L = 1− x̄− x̄(x̄− 1)

2

[
2− φ̂i−1

φ̂i

]
, α̃i+1,L = x̄+

x̄(x̄− 1)

2

Similarly, for the right-biased polynomial the weights would be

α̃i,R = 1− x̄+
x̄(x̄− 1)

2
, α̃i+1,R = x̄− x̄(x̄− 1)

2

[
2− φ̂i+2

φ̂i+1

]
, α̃i+2,R = 0.

This preserves the value given by the higher-order interpolation scheme and signifi-

cantly reduces the likelihood of a negative weight. Note that both of the quadratic

interpolations provide a second order correction to a linear interpolation. If we take

both of these interpolation schemes and average them, we get the weights that we

use in the quadratic version of our scheme:

αi = 1− x̄− x̄(x̄− 1)

4

(
1− φ̂i−1

φ̂i

)
, αi+1 = x̄− x̄(x̄− 1)

4

(
1− φ̂i+2

φ̂i+1

)
.

Using these modified weights we can then perform our semi-Lagrangian steps as dis-

cussed earlier. Figures 2.2, 2.3 and 2.4 demonstrate the significant error improvement

by using this interpolation scheme. Note that in these figures, using second-order

Runge-Kutta to trace characteristic lines gives no numerical differences, as the first

order approximation is already exact.

Whereas arbitrarily high order characteristics can be traced using our semi-Lagrangian

scheme, it is this negativity in the interpolation weights which so far has restricted

our method to first order accuracy. Negative weights are not entirely detrimental,

and in fact the quadratic version of our scheme admits that to some lesser degree. If

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 15

(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 2.2: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 3s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number .9. Using
a higher-order interpolation scheme gives noticeably reduced error; for example at
∆x = 5/256 the peak error for the linear interpolation scheme is .111, while the
quadratic interpolation scheme has a peak error of .060.

16CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 2.3: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 3s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As
there are no temporal errors (as any semi-Lagrangian ray exactly captures the char-
acteristic curve), all errors are due to the application of an interpolation scheme. The
larger CFL number permits time steps almost three times larger than those taken for
Figure 2.2, and so the error introduced by the interpolation scheme are significantly
smaller.

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 17

(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 2.4: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 9s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As there
are no temporal errors (as any semi-Lagrangian ray exactly captures the characteristic
curve), all errors are due to the application of an interpolation scheme. As such the
number of interpolations needed decreases as the CFL number increases, and the
error goes down proportionally. If we run the same simulation with a larger CFL
number and a proportionally longer period of time, the errors become similar (see
Figure 2.2).

18CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

the sum of all the weights at a grid node is equal to some ε < 0 at a grid node, then

we simply forward-advect 1 + ε amount of material. The problem is that a typical

quadratic interpolation scheme can have rather large positive weights balancing out

rather large negative weights on the side of the interval from which two points are

used, and this seems to lead to difficulties. Our process of merging the weights to

form α̃ from α tends to cancel out these large positive and negative values making the

result more reasonable. Of course one can guarantee that the weights never become

negative by simply using standard multi-linear interpolation.

It may be possible to make a second order accurate scheme using only order first order

accurate interpolation stencils, as was done in the modified MacCormack scheme of

[101] and the modified BFECC scheme of [19]. Another interesting approach would

be to apply a second order non-conservative correction to a full conservative first

order accurate scheme.

2.2.3 Examples

In order to demonstrate the conservation properties of our scheme, we consider an

advected sine-wave “bump” using a constant velocity field. That is,

φ̂(x, 0) =

1
2

(
1 + sin

(
4π ∗ (x− 3

8
)
))

.25 ≤ x ≤ .75

0 else
(2.6)

with u = 1. The problem is discretized over the domain [0, 5], and we solve Equa-

tion (2.2) with a CFL number of .9. In Figure 2.5(a), we show the solution as com-

puted by a standard non-conservative semi-Lagrangian advection, while Figure 2.5(b)

shows the solution computed by our new scheme. As we expect, the solutions of the

two methods agree and both converge to the analytic solution. Figure 2.2 shows a

comparison between using linear and quadratic interpolation in our method. Fig-

ure 2.3 shows the same comparison using a CFL number of 2.9 instead of 0.9. Note

that the errors are much smaller since approximately three times fewer time steps

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 19

(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 2.5: A sine-wave “bump” is advected through a uniform velocity field. Shown
is the solution at time t = 3s. We apply the first order version of both the standard
semi-Lagrangian advection, as well we our proposed conservative semi-Lagrangian
advection scheme.

(and thus interpolations) are needed. In Figure 2.4 we run this simulation three

times longer with a CFL of 2.9 showing errors more commensurate with Figure 2.2

as expected. We also demonstrate the order of convergence in Table 2.1 which shows

that our algorithm gives first order convergence.

Figure 2.6 considers a square wave in the divergent velocity field u = sin(πx/5). Note

the marked difference between the conservative and non-conservative method. Fig-

ure 3.7 shows dramatic loss of conservation in the standard semi-Lagrangian method

as compared to the conservative version which maintains exact value up to round

off error. Figure 2.7 shows a convergence analysis for the two schemes using a high

resolution full conservative ENO method [104] as a ground truth. As is typical the

20CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Coarse Res Fine Res Convergence Order
128 256 0.9384
256 512 1.2062
512 1024 1.1614
1024 2048 1.1260
2048 4096 0.9938

Table 2.1: Convergence order is computed by taking the log2(ce/fe) where ce is the
error in the coarse resolution simualtion and fe is the error in the fine resoltuion
simulation. The order is averaged over all relevant points.

non-conservative method converges to the wrong solution whereas our new method

converges to the result obtained via ENO. The reason the non-conservative method

converges to the wrong solution in this case is that it solves Equation (3.1) whereas

our method solves Equation (2.2). In comparing these two equations, standard semi-

lagrangian advection is missing the φ̂(∇ · ~u) term.

We also consider the Zalesak disc example, discussed in [124]. In this example a

notched disk is advected through a velocity field specified by

u = (π/314)(50− y)

v = (π/314)(x− 50)

Shown in Figure 2.9 is the disk after one rotation, for a variety of resolutions. We

also plot the total mass of the system as a function of time, in Figure 2.10; note

that a standard semi-Lagrangian scheme fails to conserve the mass of the disk. The

conservative semi-Lagrangian scheme conserves the mass of the disk up to roundoff

error.

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 21

(a) t = 0s.

(b) t = 1s.

(c) t = 2s.

(d) t = 3s.

(e) t = 4s.

(f) t = 5s.

Figure 2.6: We consider the evolution of density in a velocity field that is specified by
u(x) = sin

(
π x

5

)
. In such a velocity field, the standard semi-Lagrangian approach fails

to capture the rarefaction and converges to a non-physical solution. This simulation
is run with ∆x = 5/8192.

22CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 2.7: A square wave that evolves with a divergent velocity field u = sin
(
π x

5

)
.

Shown is the solution at time t = 3s. We apply the first order version of both
the standard semi-Lagrangian advection, as well as our proposed conservative semi-
Lagrangian advection scheme. In this example, we see the standard semi-Lagrangian
advection scheme converges to the wrong solution.

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 23

Figure 2.8: Shown is the time history of
∑

i ∆xφ̂i for a square wave that is evolved
through a divergent velocity field with u = sin

(
π x

5

)
. Solutions for both the standard

semi-Lagrangian advection scheme and our proposed conservative semi-Lagrangian
advection scheme are shown at high-resolution with ∆x = 5/8192.

24CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.9: After one full rotation of the Zalesak disk [124] using our proposed conser-
vative semi-Lagrangian advection scheme, for a variety of grid resolutions. Shown is
the .5 isocontour for grid resolutions ∆x = 2−7, 2−8, 2−9, 2−10, and 2−11, in addition
to the analytic solution. The mass of the disk is properly conserved using our method
(this is verified in Figure 2.10), while the standard semi-Lagrangian advection scheme
loses significant mass. In this light, our scheme can be thought of as the conservative
advection of a smeared-out Heaviside color function.

2.2. CONSERVATIVE SEMI-LAGRANGIAN METHOD 25

Figure 2.10: Shown is the time history of Σi∆xφ̂i + Σout −Σin for Zalesak Disk with
∆x = 2−7. Time history for the standard semi-Lagrangian advection scheme is shown
in red, while our proposed conservative semi-Lagrangian advection scheme is shown
in green.

26CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

2.3 Incompressible flow

We model incompressible flow using the viscous Navier-Stokes equations, given by~ut + ~u · ∇~u+ ∇p
ρ

= 1
ρ
∇ · (µ∇~u)

∇ · ~u = 0
(2.7)

where ~u is the fluid velocity, p is the pressure and µ is the coefficient of viscosity

(which is taken to be constant). For the sake of illustration, we use a fairly simple

time discretization scheme. First we account for the ~u · ∇~u term by advecting ~un

forward in time using the incompressible velocity field ~un with a semi-Lagrangian

advection scheme, giving an advected velocity ~u?. This velocity field is projected and

made incompressible by solving

∆t∇ · 1

ρ
∇p = ∇ · ~u? (2.8)

to obtain a pressure, which is then applied via:

~u?? = ~u? − ∆t

ρ
∇p. (2.9)

Viscous forces are next implicitly accounted for by solving

~̃un+1 = ~u?? +
∆t

ρ
∇ · (µ∇~̃un+1), (2.10)

after which we project the flow field again by solving Equation (2.8) (replacing ~u?

with ~̃u), and then finally updating the flow field to time tn+1 via

~un+1 = ~̃un+1 − ∆t

ρ
∇p. (2.11)

A standard Marker and Cell (MAC, [38]) grid discretization is used, storing fluid

velocity in a component-by-component fashion on cell faces. By treating the viscous

forces implicitly, we alleviate the viscous time step restriction.

2.3. INCOMPRESSIBLE FLOW 27

2.3.1 Momentum-conserving scheme

In order to derive a completely conservative scheme for the momentum, we reformulate

the incompressible flow equations slightly. First, we multiply Equation (2.7) through

by density, giving the following equations in two spatial dimensions:

ρut + ρuux + ρvuy + px = (µux)x + (µuy)y, (2.12)

ρvt + ρvux + ρvvy + py = (µvx)x + (µvy)y. (2.13)

Next, we make use of conservation of mass, given in two spatial dimensions as ρt +

(ρu)x+(ρv)y = 0, noting that for incompressible flow this is identical to ρt+uρx+vρy =

0. If we combine this with the equations above, we can introduce the momentum Lu =

ρu, Lv = ρv and derive the conservation form of the incompressible flow equations as

(Lu)t + (Luu)x + (Luv)y + px = (µux)x + (µuy)y, (2.14)

(Lv)t + (Lvu)x + (Lvv)y + py = (µvx)x + (µvy)y. (2.15)

For advection we solve (Lu)t+ (Luu)x+ (Luv)y = 0 for L?u using our new conservative

semi-Lagrangian scheme. Similarly, (Lv)t+(Lvu)x+(Lvv)y = 0 is solved for L?v. This

small change in form of the equations yields an advection scheme which is robust to

the numerical viscosity effects typically seen in a semi-Lagrangian advection solver.

We use the standard pressure update to compute the pressure, where the interme-

diate velocity field is computed as u? = L?u/ρ and v? = L?v/ρ. Equation (2.9) and

(2.12), (2.13), (2.14), (2.15) illustrate that the pressure already acts as a conservative

momentum flux between fluid cells. For fluid cells which lie along the fluid-structure

interface, pressure acts as a momentum flux from the fluid cell faces to the solid,

and vice versa. Thus, after projection we can simply update our x-momentum as

L??u = ρu?? and y-momentum as L??v = ρv??, after applying the correction defined in

Equation (2.9) to the velocity field ~u?.

The viscous terms are treated implicitly by solving ρũn+1−ρũ??
∆t

= (µũn+1
x)x + (µũn+1

y)y

28CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

which for constant density and viscosity becomes

L̃n+1
u = L??u + ∆tµ∇2ũn+1, (2.16)

similar to Equation (2.10) above. In order to properly account for momentum transfer

during the viscous stage, we are careful to view this viscosity update in a flux-based

form. That is, µux acts as a momentum flux in between the MAC grid stencil locations

of u values, and µuy acts as a momentum flux in between MAC grid u stencil locations

in the other direction. The same approach is used to update v velocities, using µvx

and µvy as momentum fluxes between MAC grid v stencil locations. This gives

L̃n+1
v = L??v + ∆tµ∇2ṽn+1. (2.17)

These intermediate quantities are again projected by solving Equation (2.8) (replacing

~u? with ~̃un+1). The time tn+1 velocity field is computed using Equation (2.11), and

momentum is updated as Ln+1
u = ρun+1 and Ln+1

v = ρvn+1.

2.3.2 Examples

We consider a cavity with high viscous forces that is driven by a flat, horizontal

velocity profile with magnitude 1m/s on the top boundary of the domain. All walls

in the domain are closed, the computational domain is 1m × 1m with ∆x = .01,

and a driving flow moving at speed 1 m/s. Density is 1, and the viscous forces are

determined by µ = 100 Pa · s. Viscosity causes a vortex to form in the cavity, which

quickly settles to steady-state. The resulting steady-state solutions are shown in

Figure 2.11 for the standard semi-Lagrangian advection scheme and our momentum-

conserving semi-Lagrangian advection scheme. Examining the pressure along the

internal boundary, it is interesting to note that both schemes produce 0 net force

acting on the solid boundary (i.e.
∑

∂Ω pd
~A = 0), but the magnitude of the force isn’t

(i.e.
∑

∂Ω |p| 6= 0), suggesting that we properly capture linear momentum but angular

momentum remains an issue.

2.3. INCOMPRESSIBLE FLOW 29

(a) Standard semi-Lagrangian scheme. (b) Momentum-conserving scheme.

(c) Kinetic energy-conserving scheme.

Figure 2.11: Streamlines for the driven cavity example using standard semi-
Lagrangian advection, our proposed momentum-converging method, and our pro-
posed kinetic energy-conserving method. All simulations are run with ∆x = 2−7.

Next we consider the simple case of flow past a sphere with closed walls on the top and

bottom of the domain, inflow velocity with magnitude 2 m/s from the left side of the

domain and an open outflow boundary on the right side of the domain with p = 0. For

this example we used a domain of (0, 0)×(2, 1) (in meters), no viscosity and a grid size

defined by ∆x = .01. The solution at time t = 9s is shown in Figure 2.12, using our

proposed momentum-conserving scheme. The results of a standard semi-Lagrangian

30CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

scheme are qualitatively (but not quantitatively) similar as expected.

Figure 2.12: Stream-line visualization of flow past a sphere.

We also carry out a detailed study of the momentum, for both our scheme and the

standard semi-Lagrangian scheme. The bottom two lines in Figure 2.13 show the

cumulative momentum advected into and out of our of the domain for the semi-

Lagrangian scheme, while the middle two lines show these same quantities for our

momentum-conserving scheme. Since the flow is divergence free, one would generally

expect these lines to be commensurate, however, due to numerical errors in inter-

polation there is some drift, which accumulates as the simulation carries forward.

As pointed out above, the pressure acts as a conservative flux between fluid veloc-

ity degrees of freedom. Along solid wall boundaries, such as the top and bottom

of the domain and around the sphere, the pressure can be scaled by the cell face

size and ∆t to give an impulse, suggesting that it represents a momentum-preserving

collision between the solid and the fluid. However, since these walls are stationary,

i.e. they have infinite mass, they remove momentum from the flow. If we sum the

momentum lost along the walls we obtain the bottom two lines shown in Figure 2.14

for the semi-Lagrangian scheme and our momentum-conserving scheme respectively.

Momentum is also introduced into the domain via pressure at the inflow boundary

condition, where an upstream pressure profile is used to maintain a constant inflow

2.4. TREATING KINETIC ENERGY 31

velocity. The gains due to inflow are shown in Figure 2.14 for the semi-Lagrangian

method on the top curve, and the second curve from the top is for our momentum-

conserving method. Note that since p = 0 at the outflow boundary, no momentum

is lost. Figure 2.15 shows the result if we sum the previous graphs accounting for all

the momentum advected into and out of the domain as well as the pressure fluxes

at the walls and inflow. The bottom line, which is 0 to numerical roundoff, shows

that our momentum-conserving scheme does indeed conserve momentum during the

semi-Lagrangian advection step (which is the only term not accounted for in the pre-

vious graphs). In contrast, the standard semi-Lagrangian scheme gains momentum

during the advection step. Although we did not compute the momentum gained by

carefully looking at that step, we can accurately compute it by accounting for all the

remaining terms and seeing what is left over.

2.4 Treating kinetic energy

It is interesting to consider incompressible flow from the standpoint of kinetic energy.

Although kinetic energy is not conserved for a viscous fluid, it is conserved for an

inviscid fluid. Moreover, it should be conserved during the semi-Lagrangian advection

stage, even though it typically is not. We begin by deriving the time derivative of

K = 1
2
ρ~u · ~u as

Kt =
1

2
(ρ~u · ~u)t =

1

2
~u · ~uρt + ρ~u · ~ut

=
1

2
~u · ~u (−~u · ∇ρ) + ~u · (∇ · τ − ρ~u · ∇~u−∇p) .

We take advantage of Equation (2.7) from above, and observe that

1

2
(~u · ~u)~u · ∇ρ+ ρ~u · (~u · ∇~u) =

1

2
(~u · ~u)~u · ∇ρ+

1

2
ρ~u · ∇ [~u · ~u]

=
1

2
~u · ∇ [ρ~u · ~u] = ~u · ∇K

= ∇ · (K~u).

32CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Note that we can freely add in p∇ · ~u and K∇ · ~u, which are both analytically zero.

This gives time evolution of kinetic energy in conservative form as

Kt +∇ · [(K + p)~u] = ~u · (∇ · τ). (2.18)

2.4.1 Advection

We compute and store kinetic energy on horizontal u faces as Ku = 1
2
ρu2, and at

vertical v faces as Kv = 1
2
ρv2, and evolve them forward in time separately as they

only couple together through pressure fluxes, similar to the advection of the velocity

field.

For advection, we solve (Ku)t + (Kuu)x + (Kuv)y = 0 for K?
u and (Kv)t + (Kvu)x +

(Kvv)y = 0 for K?
v , using the time tn velocity field ~un. In doing so, we explicitly

conserve the kinetic energy of the system during the advection step, which has the

effect of relieving the artificial viscosity effects typically seen when using a standard

semi-Lagrangian advection scheme.

Once we compute K? advected quantities, we use these kinetic energies to determine

the magnitudes of the intermediate fluid velocity field ~u?. That is, u? = ±
√

2K?
u/ρ

and v? = ±
√

2K?
v/ρ. We also advect fluid velocities forward in time (using either

the semi-Lagrangian scheme or the momentum-conserving scheme) and use the sign

of the resulting velocity field to determine the sign of u? and v?.

2.4.2 Projection

The modified ~u? values are used in Equation (2.8) to compute the fluid pressure.

Unlike the momentum update, where the pressure itself acts as a momentum flux

and the result of the projection does conserve momentum, for kinetic energy we not

only don’t have good values for the flux p~u in Equation (2.18), but the resulting

post-velocity projection does not have the same kinetic energy as the pre-projected

2.4. TREATING KINETIC ENERGY 33

velocity. Indeed, the change in kinetic energy due to the projection is

∆Ku =
ρ

2

(
(u??)2 − (u?)2

)
∆Kv =

ρ

2

(
(v??)2 − (v?)2

)
=
ρ

2
(u?? + u?) (u?? − u?) =

ρ

2
(v?? + v?) (v?? − u?)

=
ρ

2
(u?? + u?)

(
−∆t

ρ
px

)
=
ρ

2
(v?? + v?)

(
−∆t

ρ
py

)
= −∆tû (px) . = −∆tv̂ (py) .

where û = u??+u?

2
and v̂ = v??+v?

2
, and we use Equation (2.9) to replace (u?? − u?)

and (v?? − v?) terms respectively. Then ∆Ku and ∆Kv look like ∆tûpx and ∆tv̂py

respectively, overall accounting for the ~u · ∇p component of ∇ · (p~u). Analytically

we would expect this to be sufficient in an incompressible flow, as p∇ · ~u = 0, but

examining this update from the discrete standpoint we note that ∇ · ~̂u = 1
2
∇ · ~u? +

1
2
∇ · ~u?? = 1

2
∇ · ~u? 6= 0 in general and some kinetic energy is lost. If we examine the

sum of the terms of the update for cell faces i− 1/2 and i+ 1/2,

ûi+1/2
pi+1 − pi

∆x
+ ûi−1/2

pi − pi−1

∆x
,

we can rearrange terms slightly, giving

ûi+1/2pi+1

∆x
− pi

ûi+1/2 − ûi−1/2

∆x
−
ûi−1/2pi−1

∆x
,

where the boxed term, when summed over all spatial dimensions for cell i, gives a

discrete approximation of −p∇· ~̂u. That is, by performing an update using ∆Ku and

∆Kv, we are losing exactly this component of the flux. If we view each individual

component of the boxed term, piui+1/2/∆x, these can be thought of as fluxes between

cell face i + 1/2 and cell center i; then the kinetic energy that has been lost in this

update is precisely the kinetic energy that accumulates to a cell center, rather than

being fully distributed to our degrees of freedom.

Various strategies can be taken to address this, such as taking the accumulated cell-

centered kinetic energy and distributing it equally to all of the surrounding cell faces.

34CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

We plan on looking into this more in future work [57], but for now we accept the loss

of kinetic energy due to projection and incorporate the change in kinetic energy by

simply using ∆Ku and ∆Kv as computed above.

If we consider the pressure at a grid cell i and scale it up by the area of a cell face and

∆t, we get the impulse p̂i between dual-cells i− 1/2 and i+ 1/2. In multiple spatial

dimensions, this impulse couples together the orthogonal directions, involving every

cell face incident to cell i. This impulse exchange can be thought of as a collision

between neighboring dual cells. Along this line of reasoning, it is interesting to

note that while collisions preserve momentum and total energy, they do not conserve

kinetic energy unless the coefficient of restitution is 1. Typically in a collision kinetic

energy is lost, and the collisions in this system—with one exception—are no different.

In the special case where (∇·~u?)i = 0, then the multi-dimensional collision that occurs

at cell i does indeed conserve kinetic energy, and can be thought of as a fully elastic

collision with a coefficient of restitution equal to 1.

For the momentum update, the application of these collision-based impulses can be

done in any order; that is, we can freely iterate over impulses, updating the momen-

tum by applying impulses in a Gauss-Seidel manner. This is not the case for the

energy update, as the application of one impulse changes the energy updated by all

subsequent impulses due to the cross-terms which arise. If we let ρ = m
∆x∆y

, then the

update takes the form

ûnew = ûold +
p̂i
m
, (2.19)

where p̂i is the impulse defined above. If we consider the change in kinetic energy

2.4. TREATING KINETIC ENERGY 35

after these updates,

∆KE =
1

2
m(ûnewer)2 − 1

2
m(ûold)2

=
1

2
m

[(
ûold +

p̂i
m
− p̂i+1

m

)2

− (ûold)2

]

=
1

2
m

[
(ûold)2 + ûold

(
p̂i
m
− p̂i+1

m

)
+

(
p̂i
m
− p̂i+1

m

)2

− (ûold)2

]

= ûold
(
p̂i − p̂i+1

2

)
+

1

2m

(
p̂2
i + p̂2

i+1

)
− p̂ip̂i+1

m
,

then the boxed term is the cross-term which arises from the sequential application of

impulse updates to the fluid volume. Note that the result is the same regardless of

which impulse p̂i or p̂i+1 is applied first. However, one might misconstrue the gain

in kinetic energy due to each impulse depending on the order in which they were

applied.

2.4.3 Viscosity

After the projection in Equation (2.9) we compute the viscous forces via Equa-

tion (2.10) and then compute the kinetic energy as seen by the fluid velocity field:

∆K =
ρ

2

(
(ũn+1)2 − (u??)2

)
=
ρ

2

(
u?? + ũn+1

) (
ũn+1 − u??

)
=
ρ

2

(
u?? + ũn+1

)(∆t

ρ
∇ · (µ∇u??)

)
= ∆tũ∇ · (µ∇u??) ,

where ũ = u??+ũn+1

2
and we use Equation (2.10) to eliminate the (ũn+1 − u??) term.

This gives us K?? = K̃n+1 + ∆K, the loss of kinetic energy due to viscous effects

(noting in the case of inviscid flow that ∆K = 0 and K?? = K̃n+1 = Kn+1). Once

K?? is computed, it is projected again as discussed above.

36CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

2.4.4 Examples

We first reconsider the driven cavity case from Section 2.3.2 using our kinetic energy-

conserving semi-Lagrangian advection scheme. For this simple case, we do not at-

tempt to correct for the kinetic energy losses due to the inelastic collisions dictated by

the p̂ discussed above. That is, kinetic energy is lost during the projection step, even

though we know how much is lost to each cell center, as adding this kinetic energy

back into the flow field would lead to a divergent velocity field. The simple case of

the driven cavity is shown in Figure 2.11, showing that the kinetic energy-conserving

scheme compares well with the other two schemes. Unfortunately, for more interesting

cases such as the one shown in Figure 2.12, the inability to create a divergence-free

velocity field that is consistent with the kinetic energy posses an issue, and the results

are qualitatively different.

In spite of that we carry out an analysis for the momentum and kinetic energy in

all three schemes: the original semi-Lagrangian scheme, the momentum-conserving

scheme, and the kinetic energy-conserving advection scheme, which correctly con-

serves kinetic energy during advection but fails to account for kinetic energy loses

during projection. The reason for this quantitative analysis is to illustrate where the

kinetic energy goes, in each of these schemes. We begin by considering the momen-

tum. The top two lines in Figure 2.13 represent the momentum advected into and out

of the domain across the inflow and outflow for the kinetic energy-conserving scheme.

The middle two lines in Figure 2.14 account for the momentum fluxing through solid

wall boundaries due to pressure, as well as the pressure flux at the inflow of the do-

main. For Figure 2.15, the top line is the sum that represents the momentum loss

during advection. Note that this is rather large when compared to the other two

schemes, in part because the advected velocity is not consistent with kinetic energy.

Finally, we consider the kinetic energy transfer of all three schemes. Figure 2.16 shows

the kinetic energy advected into and out of the domain across inflow and outflow

boundaries. Figure 2.17 shows the energy gained due to the pressure interacting

with both the solid wall boundaries and pressure flux at the inflow boundary. Note

2.4. TREATING KINETIC ENERGY 37

Figure 2.13: Total momentum fluxing into the computational domain and total mo-
mentum fluxing out of the computational domain, plotted as a function of time for a
standard semi-Lagrangian scheme and our proposed momentum-conserving scheme.

that in this case the pressure acts as a collision between a fluid cell and a solid wall

boundary, and that collisions influence both the momentum and the kinetic energy.

Similar collisions happen at the inflow, where kinematically moving ghost cells collide

with our fluid domain. A new term that we didn’t consider for the momentum is the

loss of kinetic energy during projection, where fluid cells collide with each other in a

partially elastic way, losing kinetic energy; these loses are shown in Figure 2.18 for

each of the three schemes. Figure 2.19 shows the sum of all these terms discussed,

leaving only losses which occur during the advection stage of our schemes. Note that

our kinetic energy-conserving advection scheme does indeed conserve kinetic energy

during advection, whereas both the standard semi-Lagrangian scheme as well as the

momentum-conserving scheme lose kinetic energy in this step.

38CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.14: Pressure momentum flux into solid wall boundaries, and pressure mo-
mentum flux entering the computational domain from the inflow boundary condition,
plotted as a function of time for a standard semi-Lagrangian scheme and our proposed
momentum-conserving scheme.

2.4. TREATING KINETIC ENERGY 39

Figure 2.15: Sum total of momentum in the domain, plus momentum fluxed out of
the domain (through outflow and solid wall boundaries), minus momentum fluxed
into the domain (through inflow), plotted as a function of time for a standard semi-
Lagrangian scheme and our proposed momentum-conserving scheme.

40CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.16: Total kinetic energy fluxing into the computational domain and total
kinetic energy fluxing out of the computational domain, plotted as a function of time
for a standard semi-Lagrangian scheme, our proposed momentum-conserving scheme,
and our proposed kinetic energy-conserving scheme.

2.4. TREATING KINETIC ENERGY 41

Figure 2.17: Energy flux into solid wall boundaries, and energy flux entering the
computational domain from the inflow boundary condition, plotted as a function of
time for a standard semi-Lagrangian scheme, our proposed momentum-conserving
scheme, and our proposed kinetic energy-conserving scheme.

42CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.18: Change in kinetic energy due to the pressure projection step away from
boundaries, plotted as a function of time for a standard semi-Lagrangian scheme, our
proposed momentum-conserving scheme, and our proposed kinetic energy-conserving
scheme. Note that in all three schemes the change in momentum due to the pressure
projection step away from boundaries is zero.

2.4. TREATING KINETIC ENERGY 43

Figure 2.19: Sum total of kinetic energy in the domain, plus kinetic energy fluxed
out of the domain (through outflow and solid wall boundaries), minus kinetic en-
ergy fluxed into the domain (through inflow), plus kinetic energy lost in the projec-
tion step away from boundaries, plotted as a function of time for a standard semi-
Lagrangian scheme, our proposed momentum-conserving scheme, and our proposed
kinetic energy-conserving scheme.

44CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

2.5 Compressible flow

We model compressible flow using the inviscid Euler equations,
ρ

ρ~u

E


t

+


∇ · [ρ~u]

∇ · [ρ~u⊗ ~u] +∇p
∇ · [(E + p)~u]

 = 0, (2.20)

where ρ is the fluid density, ρ~u is the momentum, E = ρe+ 1
2
ρ~u ·~u is the total energy

per unit volume and e is the internal energy per unit mass. These are solved using

the splitting proposed in [54]. Defining the state vector as ~U = (ρ, ρ~u,E)T , the flux

is split into its advective component, F1(~U), and acoustic component F2(~U):

F1(~U) =


∇ · [ρ~u]

∇ · [ρ~u⊗ ~u]

∇ · [E~u]

 , F2(~U) =


0

∇p
∇ · [p~u]

 . (2.21)

The method first computes F1(~U) explicitly with the MENO advection scheme, which

uses density-averaged velocities at cell faces, advecting the state variables to an in-

termediate state ~U?. That is,

ρ? = ρn −∆t∇ · (ρ~u)

ρ~u? = ρ~un −∆t∇ · [ρ~u⊗ ~u]

E? = En −∆t∇ · (E~u).

Note that ρ? = ρn+1, as the first term in F2(~U) is zero. Next, we examine the

remaining component of the momentum equation,

ρn+1~un+1 − ρn+1~u? = −∆t∇p.

We divide through by ρn+1 and take its divergence, yielding an implicit equation for

2.5. COMPRESSIBLE FLOW 45

pressure:

∇ · ~un+1 −∇ · ~u? = −∆t∇ · 1

ρn+1
∇p. (2.22)

In order to remain conservative, we discretize ∇ · ~u? by computing ~u? at faces. That

is, we compute ∇ · ~u? = −GT ~̂u?, where −GT is the discretized divergence operator

and ~̂u? are ~u? velocities averaged to faces. Then we next eliminate the ∇ · ~un+1 term

by considering the pressure evolution equation (see [24]):

pt + ~u · ∇p+ ρc2∇ · ~u = 0. (2.23)

This is discretized as pn+1 = pa−∆tρn(cn)2∇·~un+1, where pa is an advected pn pressure

using the ~un velocity field. Plugging this into (2.22), discretizing the gradient ∇ as

G and the divergence ∇· as −GT gives the following implicit pressure equation:[
I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT ~̂u?. (2.24)

where ρ̂n+1 are densities averaged to cell faces.

Finally these pressures are applied to the ~U? state to get time tn+1 quantities. Since

pressure values and momentum quantities are collocated, we average pressures to

faces as pn+1
i+1/2 =

pn+1
i+1 ρ

n+1
i +pn+1

i ρn+1
i+1

ρn+1
i +ρn+1

i+1

, permitting us to evaluate ∇p for the momentum

update in a flux-based manner. We also want to evaluate p~u at cell faces in order

to numerically conserve total energy, and so we update the ~̂u? velocities from Equa-

tion (2.22) as ~̂un+1 = ~̂u? − ∆t Gpn+1

(ρi+ρi+1)/2
. This permits us to write the numerically

conservative flux-based update as

(ρ~u)n+1 = (ρ~u)?−∆t

(
pn+1
i+1/2 − p

n+1
i−1/2

∆x

)
, En+1 = E?−∆t

(
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x

)
.

(2.25)

In order to demonstrate our new conservative semi-Lagrangian advection, we use it

to replace the MENO advection scheme when solving F1(~U). Notably the method of

[54] was able to stably compute the solutions of compressible flow ignoring the CFL

46CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

restriction due to the acoustic wave because of the implicit treatment of pressure in

Equation (2.24). However, they were still limited by a CFL restriction based on the

fluid velocity. Using our unconditionally stable advection scheme, we are no longer

restricted to a fluid velocity-based CFL.

2.5.1 Example

We solve the classic one-dimensional Sod shock tube [117] using the advection-based

CFL condition given by

∆t

2

(
|u|max

∆x
+

√
|u|2max
∆x2

+ 4
|px|
ρ∆x

)
≤ 1.

as defined in [54]. The Sod shock tube takes as initial conditions

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.
(2.26)

This example is solved on a computational domain of x ∈ (0, 1), with ∆x = 2.5×10−3.

We compare the results of an approach using MENO and a CFL number of .9 with

the results of an approach using our conservative semi-Lagrangian advection scheme

with a CFL number of 3. To illustrate convergence, we show a plot of density at

time t = .15s for a selection of grid resolutions in Figure 2.20, where conservative

semi-Lagrangian advection is used with the semi-implicit compressible flow solver

with a CFL number of .5. Figure 2.21 shows convergence when a CFL number of

3 is used. We show the same quantities for t = .8s in Figures 2.23 and 2.24. Each

figure also shows the resulting solution when solved using a traditional, fully explicit

compressible flow solver with 3rd order accuracy in time and space, for comparison.

We stress that the over-shoots near the shock front are a consequence of the semi-

implicit discretization of the equations discussed in [54], as the implicit pressure

system is centrally biased; to illustrate this point, we show in Figure 2.22 the results

2.5. COMPRESSIBLE FLOW 47

Figure 2.20: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [54], using our new conservative semi-Lagrangian scheme and a
CFL number of .5. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.

generated when a third order MENO advection scheme is used instead, which suffers

from these same overshoots.

Currently, in the context of compressible flows, we are working to extend our method

in a fashion that hybridizes it with a flux-based scheme such as that of [104]. The goal

here would be to apply high order accurate flux-based discretization in most of the

domain (albeit with a restrictive CFL condition), yet apply our method near moving

solid boundaries and especially thin shells, see [35].

48CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.21: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [54], using our new conservative semi-Lagrangian scheme and a
CFL number of 3. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.

2.6 Conclusion

We have presented a conservative, unconditionally stable semi-Lagrangian advection

scheme. The method is built from simple, first order semi-Lagrangian building blocks.

We show that the method is beneficial in the simulation of both incompressible and

compressible flows.

2.6. CONCLUSION 49

Figure 2.22: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [54], using a third order MENO advection scheme and a CFL
number of .5. We zoom in to the box [.725, .775]× [.1, .3], showing the shock front in
greater detail and highlighting convergence at the discontinuity.

50CHAPTER 2. UNCONDITIONALLY STABLE CONSERVATIVE ADVECTION

Figure 2.23: Density profile of a SOD shock tube at t = .8s, as generated by the
scheme detailed in [54], using our new conservative semi-Lagrangian scheme and a
CFL number of .5. In order to capture this later time, we extend the computational
domain to x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence.
We zoom in to the box [1.812, 1.932]×[.1, .3], showing the shock front in greater detail
and highlighting convergence at the discontinuity.

2.6. CONCLUSION 51

Figure 2.24: Density profile of a SOD shock tube at t = .8s, as generated by the
scheme detailed in [54], using our new conservative semi-Lagrangian scheme and a
CFL number of 3. In order to capture this later time, we extend the computational
domain to x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence.
We zoom in to the box [1.812, .932]× [.1, .3], showing the shock front in greater detail
and highlighting convergence at the discontinuity.

Chapter 3

Mass and Momentum Conservation

Momentum conservation has long been used as a design principle for solid simulation

(e.g. collisions between rigid bodies, mass-spring elastic and damping forces, etc.),

yet it has not been widely used for fluid simulation. In fact, semi-Lagrangian advec-

tion does not conserve momentum, but is still regularly used as a bread and butter

method for fluid simulation. In this chapter, we propose a modification to the semi-

Lagrangian method in order to make it fully conserve momentum. While methods

of this type have been proposed earlier in the computational physics literature, they

are not necessarily appropriate for coarse grids, large time steps or inviscid flows,

all of which are common in graphics applications. In addition, we show that the

commonly used vorticity confinement turbulence model can be modified to exactly

conserve momentum as well. We provide a number of examples that illustrate the

benefits of this new approach, both in conserving fluid momentum and passively ad-

vected scalars such as smoke density. In particular, we show that our new method is

amenable to efficient smoke simulation with one time step per frame, whereas the tra-

ditional non-conservative semi-Lagrangian method experiences serious artifacts when

run with these large time steps, especially when object interaction is considered.

52

3.1. INTRODUCTION 53

Figure 3.1: A comparison between simulations of (Left) the traditional semi-
Lagrangian method and (Right) our method with a very large time step at resolution
256×512×256. Note how the large time steps cause alternating gaps in the smoke as
seen above and below the sphere. Also note the lack of fluid structure resulting from
the collision with the sphere. In contrast, our method conserves mass and momentum
and produces a highly detailed flow field. Note in particular, the creation of multiple
distinct vortex rings that pass through each other using our method.

3.1 Introduction

Momentum conservation is considered to be a fundamental building block for solid

simulations (e.g. it is enforced during rigid body collisions, rigid body temporal evo-

lution, elastic and damping forces for mass-spring systems, etc.), however, when sim-

ulating incompressible fluids in the graphics community, it has largely been ignored.

54 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

The same can be said in the computational physics community, where many methods

for simulating incompressible flow typically do not conserve momentum, albeit when

simulating compressible flow, momentum is strictly conserved since it is required to

get the correct shock speeds. We refer the reader to a few of the papers on com-

pressible flow written in the graphics literature, such as [120, 103, 55]. In contrast,

the semi-Lagrangian method, introduced in graphics by Stam [105], does not con-

serve momentum, yet it has been a staple algorithm for incompressible flow for over

a decade.

While many alternative advection methods exist in the computational physics liter-

ature, they often come with restrictions on the grid type, grid spacing, or boundary

conditions. This makes them rather difficult to use in graphics applications where

the geometry tends to be detailed and complex. Most of these schemes also come

with restrictions on the size of the time step, but semi-Lagrangian advection is un-

conditionally stable. In fact, this makes it appealing to build high-order methods out

of first-order semi-Lagrangian building blocks, as was done in the BFECC [18, 46]

and the MacCormack [101] methods. Semi-Lagrangian methods are useful on octrees

because of their hierarchical nature and varying grid cell-size [69, 68], on tetrahedral

meshes because of their lack of structure and varying element size [26, 27, 51, 11, 2],

and for solid-fluid coupling [8, 9, 1, 99]. It is especially useful when a solid moves

through the mesh causing cells to be cut in various sizes or when considering thin

shells such as cloth when one does not want leaking (see [37]) across the solid surface.

Some computational physics authors have considered momentum conservation in the

context of incompressible flows. However, these researchers are typically interested in

obtaining algorithms that converge under refinement in both space and time, neces-

sitating the use of fully viscous flows. In contrast, graphics applications typically use

inviscid flows for efficiency (see [25]), and these are known not to converge as the grid

cell size and time step size approach zero. In addition, graphics applications typically

use large time steps and coarse grids. Hence, it is not clear if these algorithms in the

computational physics literature would perform well for graphics applications. We

have studied one such paper [58] with a rather simple implementation based on the

3.1. INTRODUCTION 55

Figure 3.2: (Left) using the method from [58], incompressibility is not properly en-
forced on coarse grids with large time steps and no viscosity. Note the white line
down the middle of the image where the smoke splits apart, which occurs because of
a lack of incompressibility during the advection. (Right) our new method incorporates
incompressibility into advection, keeping the plume from splitting apart.

semi-Lagrangian method conducive to use in graphics applications and found that

although this method converged to correct analytical solutions, it performed poorly

for applications of interest to graphics. We illustrate this in Figure 3.2 and explain

in Section 3.2 why it performs poorly. Furthermore, we propose a novel algorithm

which aims to enforce incompressibility during advection at a discrete level, thereby

alleviating the problems this scheme has for inviscid flows on coarse grids with large

time steps.

The typical projection step which makes the fluid divergence free naturally conserves

momentum. Combining this with our new momentum-conserving advection, one has

a fully momentum-conserving incompressible flow solver (except for source terms).

Note that body forces such as gravity and buoyancy should add momentum to a

flow as potential energy is converted into kinetic energy. Conservative algorithms

for both rigid and deformable bodies allow for momentum changes based on body

forces (these forces would conserve momentum, but the other body, for example

the earth, is not modelled). Many graphics applications use a turbulence model

such as vorticity confinement (see [25, 102, 122, 44]) to increase the level of detail

56 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

in the flow, and we propose a novel modification to this source term which makes

it fully conserve momentum. We demonstrate the advantages of using momentum

conservation for smoke simulation through several examples. Finally, we show that

our method can be adapted to water simulations and present some promising results

for energy conservation.

3.2 Advection

A momentum-conserving incompressible flow solver requires a conservative method

for advection. Consider a passively advected scalar φ in a divergence-free velocity

field ~u which is evolved using the equation

φt + ~u · ∇φ = 0. (3.1)

Throughout the chapter, we denote the value of φ at position ~x and at time t by

φ(~x, t). We use ~xk to denote the location of the center of cell k. When updating φ

to time tn+1, the traditional semi-Lagrangian method [105] traces a characteristic ray

from cell j backwards in time to some position ~x? and interpolates φ values from the

surrounding cells to obtain a φ value at ~x?. This value is then used as the new value

of φ at cell j, i.e., φ(~xj, t
n+1). In other words, the semi-Lagrangian method updates

φ at ~xj as

φ(~xj, t
n+1) = φ(~x?, tn) =

∑
i∈N(~x?)

wijφ(~xi, t
n), (3.2)

where N(~x?) denotes the set of cells i near position ~x? and wij are the interpolation

weights from cell centers ~xi to the point ~x?. Note that cell i could be in the set

N(~x?) for several points ~x? and several cells j. Also note that the sum βi =
∑

j wij

represents the total amount of φ removed from cell i and is typically not equal to 1.

3.2. ADVECTION 57

3.2.1 Conservation

[58] proposes two additional steps beyond Equation 3.2 to make this scheme fully

conserve φ. They note that when βi > 1, more φ is removed from cell i than exists at

time tn and modify the weights to be ŵij = wij/βi, for these cells. In addition, when

βi < 1, some of the φ in cell i is not advected with the flow. In this case, they perform

a second forward advection step tracing a characteristic ray forward in time from cell

i to some new position ~x??, and distribute (1 − βi)φ(~xi, t
n) to the cells in N(~x??)

using an interpolation stencil. Therefore, if the interpolation weights from cell j to

the point ~x?? are αij, they distribute (1 − βi)αijφ(xi, t
n) to each cell j. This means

that they modify Equation 3.2 to increment weights wij by an amount (1− βi)αij to

get ŵij for these cells as well as changing N(~x?) to include all cells from the forward

advection step that were not already accounted for during the backward advection

step. If we redefine wij to be ŵij we note that Equation 3.2 still holds, except that

now the weights wij have been first clamped (to guarantee that no excess amount of

φ is removed from cell i) and then incremented (to account for any φ in cell i that had

not yet been advected). These modifications guarantee that βi = 1, which implies

that for each cell i, the amount of φ advected to other cells is exactly equal to the

amount of φ originally present in cell i, making the scheme fully conservative.

Although the authors show convergence for viscous flows under refinement in space

and time, when experimenting with this scheme on coarse grids, with large time

steps and inviscid flows, we observed that vortices were able to tear the flow apart,

producing gaps such as those illustrated in Figure 3.2 (left) where a white spacing

runs down the center line of the flow. We observed that the absence of smoke along

the center line was caused because the clamping limits the amount of density that

can reach these cells. The quantity γj =
∑

iwij gives one an indication of how much

of φ reaches each cell. For the traditional semi-Lagrangian scheme, γj = 1, meaning

that every cell is filled, even though cells are oversampled or undersampled in order

to do this. [58] enforces βi = 1 but typically produces γj 6= 1. For conservative

incompressible flow, all of φ should be advected (βi = 1) and every destination cell

should be exactly filled (γj = 1). This can be viewed as making the weight matrix

58 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

W doubly-stochastic.

We propose the following new scheme. First, we make the observation that the

clamping and forward advection steps can be flipped, and thus, after the first semi-

Lagrangian step we forward advect for all cells with βi < 1 before clamping. This

advection step ensures that βi ≥ 1 and γj ≥ 1 for all cells. Next, we clamp γj to

1 by redefining all wij to be wij/γj, guaranteeing incompressibility. Unfortunately,

to guarantee conservation of φ, one still has to rescale βi to 1, and in general, βi is

not equal to 1 at this point. Simply clamping βi would guarantee conservation and

give improved results over the original scheme but would still give γj unequal to 1.

To alleviate this problem one could iterate by alternately clamping γi and βi, always

ensuring to clamp βi last to enforce conservation. Doing this will converge such that

both γi and βi are 1 but applying a diffusion-based operator is more efficient. For our

examples, we use one clamping iteration and then apply our diffusion method (see

below).

Diffusing the quantity φ would destroy the details of the flow, and so we diffuse

the sum γj instead. Consider the heat equation (γj)t − ∆γj = 0 discretized with

forward Euler in time and central differencing in space, which has an explicit time

step restriction of ∆t = (∆x)2/2d, where d is the dimension. This means that between

any two cells j and j+ 1 in three dimensions, the flux looks like (γj+1− γj)∆t/(∆x)2

or (γj+1−γj)/6 (by substitution). We can then apply this flux to each of the six pieces

in the seven point stencil independently. However, this process can be accelerated

by considering the heat equation one dimension at a time, where ∆t = (∆x)2/2 and

the flux looks like (γj+1 − γj)/2. Thus, we sweep through the grid in a dimension

by dimension manner considering every flux between adjacent grid points j and j +

1, updating their values by the amount (γj+1 − γj)/2. This is done using Gauss-

Jacobi iterations within a dimension, but Gauss-Seidel iterations between dimensional

sweeps.

Assuming γj+1 > γj, we subtract off the difference (γj+1 − γj)/2 from γj+1 and add

it to γj, making them both equal to (γj+1 + γj)/2. This can be viewed as updating

3.2. ADVECTION 59

the weights wk,j+1 and wk,j to (wk,j+1 + wk,j)/2, for all rows k. Observe that the

sum wk,j+1 + wk,j does not change in the process implying that the sums βj remain

invariant under diffusion. We also advect φ during this update by moving the amount

φj+1(γj+1− γj)/2γj+1 from cell j + 1 to cell j. Note that moving φ this way does not

diffuse φ itself as evidenced by the fact that when all γj values are equal the φ values

remain unchanged.

Diffusing the sums γj does not affect the sums βj, so they remain 1. If the heat

equation is solved to steady state, then γj equals 1 for all cells j. However, this

turns out to be expensive and unnecessary. Hence, we actually clamp and diffuse

the cumulative weights. We denote the cumulative weight at time tn by γnj , and

initialize γ0
j = 1. These weights are advected forward in time in the same manner as

φ to get γ̃n+1
j . These advected weights are then used to clamp φ as described above,

after which we apply a few iterations of our diffusion scheme to get γn+1
j (updating φ

values in the process). Note that only a few iterations (between 1 and 7) are required

in a time step as γ̃n+1
j incorporates the errors in incompressibility from previous

iterations. One could alternatively use other existing methods for making the matrix

W doubly-stochastic but we found that this method works well in our examples. It

is important to note that although we are looking for a doubly-stochastic matrix

we want a matrix that is as close as possible to the results from the conservative

semi-Lagrangian method prior to adding diffusion.

3.2.2 Collisions

Although this method works well in the absence of solid objects we would also like to

simulate examples such as the one shown in Figure 3.4. To conserve φ in the presence

of objects, we modify both the forward and backward ray casting for interpolation

to stop when it hits a solid object. We then use this surface point as ~x? (or ~x??) for

our interpolation weights. Unfortunately, this would still give interpolation weights

coming from cells along the surface of the object. In this case, one can simply set

those weights to 0, rescaling the remaining weights to sum to 1.

60 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

3.3 Incompressible Flow

Having developed a method for conservatively advecting a quantity, we can now apply

it to incompressible flow in order to obtain a simulation that conserves both mass

and momentum. We use our new advection method to passively advect necessary

quantities such as smoke density ρ̂ using the equation

ρ̂t + ~u · ∇ρ̂ = 0, (3.3)

which conserves the total mass throughout the simulation.

3.3.1 Navier-Stokes Equations

In order to conserve momentum, we solve the inviscid, incompressible Navier-Stokes

equations, which are given by

~ut + (~u · ∇)~u = −1

ρ
∇p+ ~f (3.4)

∇ · ~u = 0, (3.5)

where ~u is the velocity field of the fluid, ρ is the density of the fluid, ~f are any

external forces (such as gravity) scaled by ρ, and p is the fluid pressure. We solve

these equations by first calculating an intermediate velocity field ~u? via

~u? − ~un

∆t
+ (~un · ∇)~un = ~f (3.6)

using our conservative advection method on the MAC grid. Since ρ is constant, this

conserves momentum as well. We then subsequently add in the pressure forces via

the equation
~un+1 − ~u?

∆t
= −1

ρ
∇p, (3.7)

3.3. INCOMPRESSIBLE FLOW 61

where the pressure is calculated by solving the Poisson equation

∇ · 1

ρ
∇p̂ = ∇ · ~u?, (3.8)

where p̂ = p∆t.

We note that the pressure solve conserves momentum because pressure is applied in

an equal and opposite manner to each neighboring ~u?. This means that solving this

system in the absence of external forces is fully mass and momentum conserving. We

also note that since projection naturally conserves momentum and our method only

modifies the advection step, other faster projection methods such as [59] and [77] can

be used as well.

3.3.2 Vorticity Confinement

Some external forces are meant to add momentum to the system. For example, gravity

adds momentum to the system, which is allowed because in reality momentum would

be conserved if the earth was simulated. However, some forces such as vorticity

confinement [25, 102, 122, 44], which are necessary to make interesting flow fields,

are not momentum conserving. Heuristically, vorticity confinement should conserve

momentum globally since spinning things in a circle tends to produce equal amounts

of linear momentum in each direction. It turns out that it is straightforward to make

vorticity confinement conservative; we do this as follows. For each spatial dimension,

sum all the forces in that dimension, divide the resultant cumulative force by the

number of cells, and decrement the force at every cell by the net force divided by the

number of cells. We denote this momentum conserving vorticity confinement force as

~F ?. Finally, add the momentum conserving force ε ~F ?, where ε is a scale parameter.

62 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

3.4 Smoke Simulation

Although the traditional semi-Lagrangian method allows us to take bigger time steps

than conditionally stable methods, these large time steps result in noticeable errors

in the simulation. For conditionally stable simulations, one typically uses the CFL

number in order to define stability. A CFL number of 1 means that semi-Lagrangian

rays have a maximum length of 1 grid cell, whereas a CFL number of 20 would allow

them to trace back as many as 20 grid cells.

We demonstrate our method on several smoke simulation examples ran at 24 frames

per second, as shown in Figures 3.3 and 3.4. We simulated two smoke examples,

one with a ball and the other without it. Both examples have a density source at

the bottom of the domain. For each example, we ran four simulations at resolution

128×256×128: traditional semi-Lagrangian method with a CFL number of 1, our new

method with the same CFL number, traditional semi-Lagrangian method at frame

rate (1 time step per frame), and our method at frame rate. We also ran simulations

at resolution 256 × 512 × 256. Running these simulations using a low CFL number

was infeasible, so we ran both examples at frame rate. In the lower resolution case,

running at frame rate is equivalent to using a CFL number of 20. For the higher

resolution ones the CFL number was around 40. This corresponds to taking 1/40 as

many time steps as a CFL 1 simulation.

We compared our method to the traditional semi-Lagrangian method for all these

examples. Figure 3.5 shows a comparison of the high resolution examples. Note the

large amount of dissipation and artifacts that traditional semi-Lagrangian examples

have compared to our method. We also quantitatively compared the two methods,

as shown in Figure 3.7. For the lower resolution simulations we also compared our

method with the traditional semi-Lagrangian method using a low CFL number (see

Figure 3.6), demonstrating that even with low CFL numbers we achieve an increase

in visual fidelity. In particular, note the large amount of mass lost both near and

above the sphere using the traditional semi-Lagrangian method.

3.4. SMOKE SIMULATION 63

Figure 3.3: An example using our conservative advection method with smoke in-
jected from below simulated at one time step per frame using a high CFL number
(approximately 40) at resolution 256× 512× 256.

It is important to note that as the grid resolution increases by a factor of 2, the

cost increases by a factor of 8 in space and a factor of 2 in time. However, using

our method we can reduce this to only a factor of 8 in space as we can generate

good results at very large time step sizes. We also note that although our advection

method is about three times slower than the traditional semi-Lagrangian method, the

projection step dominates the cost for smoke simulations (typically around 90% of

the simulation time) and thus our method achieves performance comparable to the

traditional semi-Lagrangian method for each time step.

64 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

Figure 3.4: An example using our conservative advection method with smoke injected
from below and a static sphere simulated at one time step per frame using a high
CFL number (approximately 40) at resolution 256× 512× 256.

3.4. SMOKE SIMULATION 65

Figure 3.5: A comparison between simulations of (Left) the traditional semi-
Lagrangian method and (Right) our method with a very large time step at resolution
256× 512× 256. Note how the large time steps yield poor interpolation resulting in
alternating gaps in the smoke; this is especially apparent slightly above the ground
plane and in the large plume. Conserving the amount of smoke, as done by our
method, does not produce these artifacts.

66 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

Figure 3.6: A comparison between simulations of (Left) the traditional semi-
Lagrangian method and (Right) our method using a typical CFL of 1 at resolution
128× 256× 128. Note the large amount of mass lost when the smoke interacts with
the sphere as illustrated in Figure 3.7.

Figure 3.7: A comparison between four simulations at resolution 128 × 256 × 128.
The red and green lines are simulations using our conservative scheme. Note that
the difference in these at later frames is due to different amounts of smoke exiting
the domain as the simulations are different with largely different time steps - but we
stress that smoke is fully conserved in both cases. Comparing the blue to the red,
or similarly the purple to the green shows the amount of mass loss suffered by the
traditional semi-Lagrangian method. Note that an appreciable amount of mass is lost
even before large amounts of smoke starts exiting the domain.

3.5. WATER SIMULATION 67

3.5 Water Simulation

In addition to smoke, we applied momentum conservation to water. To do this we

used the particle level set method [28, 20, 22], although one could also use methods

such as coupled level set volume of fluid (CLSVOF) [80], marker level set [79] or

front tracking [7, 116]. In order to make water conservative, momentum needs to

be conserved during the velocity advection. However, our algorithm, as described

in Section 3.2, cannot be directly applied because this would allow momentum to

be advected from cells outside the level set (resulting in a gain in momentum), or

allow momentum to be advected to cells outside the level set (resulting in a loss in

momentum). To deal with these issues we modify both the backward and forward

advection steps.

First, the standard semi-Lagrangian method is used to advect the level set from time

tn to tn+1. Next, we consider the velocity advection step of our algorithm. We modify

the algorithm described in Section 3.2.1 to use the time tn level set as a collision body

when doing backwards interpolation (see Section 3.2.2), ensuring that we only advect

momentum that was part of the water volume. Note that some of the characteristic

rays may not land in the level set at time tn due to numerical errors. With reference

to Figure 3.8 as an example, this would mean that faces 2, 3, 4, 5 would all be outside

the level set at time tn. However, at least one of the two adjacent cells A or B at time

tn+1 must have had a valid characteristic which landed inside the level set (say, at G),

otherwise that particular velocity degree of freedom would not be inside the level set

at time tn+1. We then use A and/or B to find valid velocities. However, since these

rays end up half of a grid cell away from the velocity value, we find a new velocity

by tracing a ray half of a grid cell in the appropriate direction from the base of these

characteristics. This would change the position from 6 to 7 which we can then use to

update 1. In the case of both A and B being inside the levelset we use the average of

the two approximations of 1. Note that when going half of a grid cell in one direction

or the other from the base of the characteristic, we trace a ray colliding with the level

set at time tn just as before.

68 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

32

1

4 5
7

6

G

E

C

F

D

A

B

Figure 3.8: Momentum advection during water simulation: shown are the semi-
Lagrangian rays used to advect phi values (green) and velocity values (red). Note
that when advecting the interpolated velocity value, 6 is used if valid, otherwise 7
may be used.

Figure 3.9: A comparison between water simulations using (Left) the traditional
semi-Lagrangian method and (Right) our method at resolution 128×256×128. Note
the improvement in momentum seen using our conservative method. In particular,
the height of the splash is higher using our method. Note that in this example our
method has 25% more momentum than the standard method.

For forward advection we treat the time tn+1 level set as a collision body. However,

we also need to treat forward advection a bit differently since there is no guarantee

that time tn values of the level set land within the time tn+1 level set using the particle

level set method. Therefore, in the case when a velocity characteristic does not land

within the time tn+1 level set, we simply find the nearest point on the surface and

allocate the velocity to that point. Our intention here is not to provide an in-depth

analysis for water simulation, as the case for our new method is adequately made

via smoke simulation. However, we did wish to discuss some of the issues involved

in adapting it for water and show some preliminary simulations. Figure 3.9 shows

a comparison between our method and the traditional semi-Lagrangian method. In

this example, momentum conservation produces a higher splash as expected (see also

the video).

3.6. ENERGY 69

3.6 Energy

In addition to mass and momentum conservation, we can also conserve the energy of

the simulation. Energy conservation has been researched recently as a way to reduce

dissipation (see e.g. [100, 83, 113, 89]). In order to conserve the overall energy, we

need to make sure energy is conserved in every step of the simulation. To do this in

a visually appealing manner, we choose to add the energy that was lost at every time

step with vorticity confinement. The role of vorticity in spinning up or slowing down

a flow works to our advantage for adding or removing energy. Moreover, it can be

difficult to add energy via a force-based method as projection can remove any force

added at this step, but vorticity confinement is by nature incompressible (not exactly,

but approximately) and therefore mostly survives the projection step.

Consider adding a momentum conserving vorticity confinement force ~F

~uc = ~u? + ε ~F (3.9)

to the incremental velocity from Equation 5.7. The increase in energy due to this

force can be calculated as

E =
1

2

(∑
i

m~u2
c −

∑
i

m~u?2

)
(3.10)

where m is the mass of the cell. Equation 3.10 simplifies to

2E = ε2
∑
i

m|~F |2 + 2ε
∑
i

m~u? · ~F (3.11)

Solving this quadratic, we get

ε =
−
∑

im~u
? · ~F ±

√
(
∑

im~u
? · ~F)2 + 2E

∑
im|~F |2∑

im|~F |2
(3.12)

We choose the root such that ε = 0 when E = 0. This means that the ± is chosen to

70 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

be the same sign as
∑

im~u
? · ~F . Note that one root is equivalent to vorticity spinning

the flow in one direction to add energy and in the other direction to minimize energy,

whereas the other root corresponds to vorticity confinement looking to “invert” the

entire flow field, which is non-physical.

3.6.1 Tracking Energy

E is updated after every step in order to track how much energy is gained or lost. For

advection, we simply advect KE = m|~un|2/2 conservatively using our newly modified

version of Equation 3.2 and compare the advected value of KE? with m|~u?|2/2 for

each cell, where ~u? is obtained via conservative momentum advection of ~un.

The change in energy due to projection can be calculated at each 1-dimensional MAC

grid cell as

∆K =
ρ

2

(
(un+1)2 − (u?)2

)
=
ρ

2

(
un+1 + u?

) (
un+1 − u?

)
=
ρ

2

(
un+1 + u?

)(
−∆t

ρ
px

)
= −∆tū (px)

where ū = (un+1 + u?)/2. ∆KV , where V is the volume of the cell, is added to E.

Note that this is corrected during the vorticity confinement application for the next

time step.

Figure 3.10 illustrates an example of a closed box with an initial flow field. The flow

is then allowed to evolve, and we add fish tracer particles to visualize the flow field.

Note that the flow never dies down and always conserves the energy in the system,

as shown in Figure 3.11.

If external forces are divergence-free, then this method is fully conservative. Non-

divergence free external forces modify the pressure field, and therefore ∆K in some

3.6. ENERGY 71

Figure 3.10: (Left) A simulation of energy conserving incompressible flow at resolution
64×64×64. The initial flow field is created by starting with upwards velocities in the
center of the domain and zero elsewhere. The flow is then made divergence free and
simulated forward in time, and we note that conserving energy provides a sustainable
flow field for long-time simulation as seen in Figure 3.11 (also see the video). Fish
models are passively advected to visualize the flow field. (Right) A simulation of
energy conserving free surface flow at resolution 64× 64× 128. The initial flow field
is created by dropping a ball of water into a pool of shallow water (viewed from top
down).

sense includes energy added due to these external forces. For example, if we add

gravity to the system (with a ground) and project the resulting flow, the projection

will lose a large portion of the energy that was added with gravity, and we do not

wish to treat this as energy lost. If we did, the energy would constantly increase even

for an isolated system. One way to solve this is to simply do two projections, one

to make the flow field divergence free before forces are added and another after the

forces are added. However, this is a significant increase in cost.

Another way to find the energy lost is to figure out the total energy of the system at

the start, keep track of the amount sourced in and out and store that as A. This allows

us to calculate E = A − PE −KE for vorticity confinement. For kinetic energy we

simply calculate KE =
∑

im|~u?|2/2 for all cells i. For potential energy it depends on

whether we are simulating smoke or water. For water we can calculate PE =
∑

imgh

where g is the gravitational constant and h is the height. For smoke we use buoyancy

72 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

Figure 3.11: A graph of energy as a function of time for the simulation in Figure 3.10.
The red line shows that our method conserves energy almost exactly for 1000 frames.
Note that we do exactly conserve energy when comparing two velocity fields before
projection. However, projection removes or adds a very small amount of energy as
can be seen by the wiggles in the red line. For comparison we also plot the results for
the same simulation using the traditional semi-Lagrangian method as a green line,
and note that the energy quickly dies out.

instead of gravity. We calculate the potential energy as PE =
∑

imρ̂b(ho−h) where

b is the buoyancy constant, ρ̂ is the smoke density and ho is a constant. Using this

equation, we see that as smoke rises from buoyancy the potential energy decreases

and the kinetic energy increases to account for this loss.

Using this formulation we can simulate examples with gravity, such as the one shown

in Figure 3.10 right, where we drop a ball of water into a pool of shallow water, which

reduces the potential energy and increases the kinetic energy. We can also simulate

energy conserving smoke as shown in Figure 3.12. In this case, we did not add any

vorticity confinement to the system other than what is added for energy conservation.

Note the increased amount of detail obtained using this method. This allows us to

provide a method for automatically and dynamically determining how much vorticity

should be added into the simulation. However, if energy is lost and there are few

areas of vorticity to add energy to, adding in energy can cause undesirable noise. To

alleviate this problem we do not add vorticity for these steps, instead accumulating

this energy to be added back once sufficient vorticity has developed. Alternatively, one

3.7. CONCLUSION 73

Figure 3.12: Two simulations using our method with energy conservation with smoke
injected from below at resolution 128×256×128. Note that no vorticity confinement
was added other than that used to conserve energy. Also note that the resulting
density field appears significantly less viscous than the traditional semi-Lagrangian
method which explicitly adds vorticity confinement.

could target the correct energy and add the energy lost slowly over time. However,

for our examples we found that there was insufficient vorticity only near the very

beginning where relatively little energy was lost. Thus, we could simply add in the

total energy lost as soon as vortices started appearing.

3.7 Conclusion

We introduced a novel algorithm for mass and momentum conservation in incom-

pressible flow. We designed a new advection method using the basic building blocks

used in semi-Lagrangian advection which is known to work well for inviscid flows,

coarse grids and large time steps, a scenario common in computer graphics. We also

74 CHAPTER 3. MASS AND MOMENTUM CONSERVATION

proposed a modification to the vorticity confinement model which conserves momen-

tum. We have shown that by conserving mass and momentum we are able to run high

quality simulations while taking very large time steps (at frame rate). Our technique

can also be adapted to conserve momentum for water simulation. Finally, we showed

a modification using vorticity confinement that preserves energy as well. By being

able to run energy conserving fluid simulations with large time steps, we can create

fast, interesting fluid flows that can be potentially used for other applications such as

reduced order models or crowd simulations.

Chapter 4

Volume Conservation

This chapter provides a novel simulation method for incompressible free surface flows

that allows for large time steps on the order of 10-40 times bigger than the typical

explicit time step restriction would allow. Although semi-Lagrangian advection allows

for this from the standpoint of stability, large time steps typically produce significant

visual errors. This was addressed in chapter 3 for smoke simulation using a mass and

momentum conserving version of semi-Lagrangian advection, and while its extension

to water for momentum conservation for small time steps was addressed, pronounced

issues remained when taking large time steps. The main difference between smoke

and water is that smoke has a globally defined velocity field whereas water needs

to move in a manner uninfluenced by the surrounding air flow, and this poses real

issues in determining an appropriate extrapolated velocity field (see Figure 4.2). We

alleviate inaccuracies with the extrapolated velocity field by not using it when it is

incorrect, which we determine via conservative advection of a color function which

adds forwardly advected semi-Lagrangian rays to maintain conservation when mass is

lost. We note that one might also use a more traditional volume-of-fluid method which

is more explicitly focused on the geometry of the interface but can be less visually

appealing – it is also unclear how to extend volume-of-fluid methods to have larger

time steps. Finally, our method utilizes the visual smoothness of a particle level set

75

76 CHAPTER 4. VOLUME CONSERVATION

Figure 4.1: Water pouring into a box at a resolution of 5123. This example ran with
a CFL number ranging from 10-60 and demonstrates the large amount of small scale
details that can be achieved by using our method.

method coupled to a traditional backward tracing semi-Lagrangian advection where

possible, only using our forward traced color function solution in areas of the flow

where the particle level set method fails due to the extremely large time steps.

4.1 Introduction

Physically based simulation of water has been one of the most interesting and chal-

lenging problems in computer graphics because of the amount of small scale details

that can be achieved. Earlier work includes [29, 105, 28]. With the increased avail-

ability of low cost memory, multi-core machines and software suitable for MPI and

threading, grid sizes can be increased achieving even greater detail by reducing the

numerical viscosity that damps out the solution on coarser grids. Unfortunately, the

4.1. INTRODUCTION 77

(a) Extrapolated velocities using closest point
extrapolation

(b) Result after taking a large time step

Figure 4.2: Figure 4.2(a) shows the analytic solution for the canonical closest point
extrapolation scheme used in free surface flow simulation where the velocity field in
the “air” is determined by the closest point in the water surface. This results in a
velocity discontinuity along the curved equidistant boundary between the green and
grey shaded regions. Everything above this curve has a downward velocity obtained
from gravity acceleration of the falling drop whereas everything below this curve has
a stationary velocity of 0 obtained from the stationary liquid at the bottom of the
figure. For advection, the analytic solution using backwards cast semi-Lagrangian
rays gives the result shown in Figure 4.2(b) in blue (not yellow) where everything
above the curve moves downward and everything below the curve stays stationary.
The actual analytic solution is shown by the union of the blue and yellow regions in
the figure and we address the loss of mass depicted by the yellow region by instead
forward advecting all of that material. Of course one could forward advect the entire
drop but that leads to significantly less accuracy in the blue region where backwards
advection works well.

computational cost does not scale linearly in the number of grid cells as the time step

size must decrease either due to stability restrictions in explicit schemes or accuracy

restrictions for implicit schemes. The traditional semi-Lagrangian advection of [105]

is unconditionally stable, and thus, does allow for much larger time steps. However,

the visual artifacts that are produced with this method at large time steps make this

78 CHAPTER 4. VOLUME CONSERVATION

approach undesirable. Although this has been addressed in [60] for smoke simula-

tions, there remain a number of issues for water simulation. For example, because

water is treated as a free surface, velocities must be extrapolated across the interface

which can create artifacts at large time steps. Figure 4.2 demonstrates one such case

where a ball with constant downward velocity is falling onto a pool of water. With

current methods, the bottom portion of the ball depicted in yellow fails to advect

correctly due to inaccurate extrapolated velocities – which could only be accurate if

multi-valued. Particle based methods, see e.g. [17, 85, 127, 71] and the references

therein, also suffer from accuracy issues and visual artifacts that result from the poor

sampling of particles (too sparse or too dense) at these large time steps. There are

also additional difficulties in creating surfaces from particle data [123, 4], and we in-

stead focus our efforts on grid based methods – although addressing very large time

steps for particle based methods would also be interesting and useful. Note that front

tracking methods [7, 116] also rely on an interface representation via particles and

thus would suffer from the same sampling problems as particle based methods but

would have additional difficulties with self intersection of the surface exacerbated by

large time steps.

Since [60] increased the visual accuracy of their simulations by conserving both the

mass of the smoke and the momentum of the fluid, our main idea will be to enforce

a conservation property for the volume of the liquid. In fact, volume conservation is

a well-established idea that researchers have explored for some time. They started

by advecting a Heaviside or color function, adding various techniques to recompress

the interface representation aiming to keep it sharp in spite of the numerical smear-

ing. One early approach was to treat advection by looking at the volume swept by

faces (fluxes) and reconstructing the interface using a simple line interface calculation

(SLIC) and later a piecewise linear interface calculation (PLIC) resulting in modern

day volume-of-fluid (VOF) schemes (see e.g. [91] and the references therein). In or-

der to avoid overlapping of the flux swept volumes, these methods must be applied

one dimension at a time using dimensional splitting and the time step must be re-

stricted to be one half of that allowed by a standard explicit scheme. Various visual

4.1. INTRODUCTION 79

Figure 4.3: Assuming a velocity field directed diagonally downward and to the left as
depicted by the orange arrow, the correct volume information for the green cell would
be obtained from the brown shaded cell. Any method which looks only in orthogonal
directions would be limited to ascertain information only from the grey shaded cells
depicted in the picture. One could imagine an alternating dimension by dimension
exhaustive approach that scans all 25 cells in the neighborhood in order to eventually
find the information in the brown cell, but the semi-Lagrangian method is far more
efficient.

artifacts result from this dimensional splitting, and the interface reconstruction ends

up being discontinuous across cell boundaries. [110, 109] worked to ameliorate these

issues by coupling VOF methods to level set methods where a locally constructed

and advected level set function is used to compute surface normals alleviating some

of the flotsam and jetsam (see also [78, 80]). However, their improvements did not

completely eliminate such visual artifacts which would be exacerbated with very large

time steps, especially when dimensional splitting is used. Another possible approach

involves enforcing volume preservation globally as demonstrated in [45]. However,

this would isotropically expand the blue region in Figure 4.2 as opposed to adding

the yellow region to reconstruct the circle. Therefore, we do not take a VOF type or

global volume control approach to the problem but instead use a color function type

method that relies on semi-Lagrangian advection and sharpening (see Figure 4.3).

[84] also proposed an approach to color function advection using a conservative flux

based approach which is known to suffer from overshoots and undershoots – the thing

VOF methods were created to address. [84] referenced [30] as a method for taking

larger time steps; however, this dimension by dimension approach suffers from the

80 CHAPTER 4. VOLUME CONSERVATION

same limitations discussed in Figure 4.3.

Simply utilizing a color function type approach would suffer from all the same prob-

lems that originally led to the improved VOF methods or coupled level set VOF meth-

ods, and we would prefer to use a more visually pleasing particle level set method

such as that proposed in [22, 20] (or even a variant such as Marker Level Set [79]).

Therefore, we start with the work of [22, 20] addressing various issues with large time

steps, noting that without conservation the issue in Figure 4.2 seems implausible

to address (see Section 4.3.1). Thus, we hybridize this method with a color function

type approach in order to achieve an approximation of the yellow region in Figure 4.2,

and subsequently outline the details for two way coupling of the methods. Our color

function approach has many benefits over any dimension by dimension or flux based

approach because of the utilization of the semi-Lagrangian advection from [58] which

is especially useful for large time steps (again as shown in Figure 4.3). The resulting

method enables the simulation of incompressible flow with time steps over an order

of magnitude larger than implied by the CFL condition.

4.2 Free Surface Flows

Our fluid solver is based on the particle level set method [22] and proceeds by solving

the inviscid incompressible Navier-Stokes equations, which are given by

ut + u · ∇u = −1

ρ
∇p+ f , (4.1)

∇ · u = 0, (4.2)

where u is the velocity field of the fluid, ρ is the density of the fluid, f is the sum

of any external forces (such as gravity) scaled by ρ, and p is the fluid pressure. We

solve these equations by first calculating an intermediate velocity field u? via

u? − un

∆t
+ (un · ∇)un = f . (4.3)

4.3. TAKING LARGE TIME STEPS 81

This equation is typically solved using the standard backward semi-Lagrangian ad-

vection scheme [105] which requires an accurate approximation of the velocities in the

region traversed by the fluid during a given time step. In the region not occupied by

the liquid, one needs to obtain velocities for use in semi-Lagrangian advection, and

this is typically done using any closest-point velocity extrapolation scheme within a

band near the surface.

We then subsequently apply the pressure forces via

un+1 − u?

∆t
= −1

ρ
∇p, (4.4)

where the pressure is calculated by solving the Poisson equation

∇ · 1

ρ
∇p̂ = ∇ · u?, (4.5)

where p̂ = p∆t. We also use the pressure modifications laid out in [32] to achieve

second-order accuracy at the surface.

4.3 Taking Large Time Steps

Generally speaking, there are two main steps in the simulation. The first step is to

advect all quantities forward including the fluid velocities, level set, and particles after

which the second step is the projection. Both of these steps require modifications for

large time steps.

4.3.1 Problems With Extrapolation

The standard semi-Lagrangian advection requires looking back along characteristic

rays. However, for free surface flows, the air region is not modeled and therefore

does not have accurate velocities which need to be approximated. One method of

82 CHAPTER 4. VOLUME CONSERVATION

obtaining these velocities is to add an air flow such as in [41, 70]. The problem

with this is that for many graphics simulations, we expect the air to have very little

influence on large bodies of water. For example, a falling water drop will deform in

a surrounding airflow, and although this can be ameliorated by surface tension, this

adds an additional cost and complexity to the simulation.

Instead, as mentioned above, we fill the air region with a pseudo-velocity obtained

via the canonical closest point extrapolation scheme which allows the water to move

effectively unimpaired by the surrounding air. Typically one extrapolates about three

grid cells; however, the extrapolation bandwidth must increase as the size of the time

step increases. A previous approach [10] addresses the large time step problem by

performing a global extrapolation; however, as seen in Figure 4.2, even with the

analytic solution to the global problem, this method will fail. Other approaches such

as [12] which uses a multi-valued velocity field in order to handle collisions such as

those shown in Figure 4.2, will fail in other cases such as when two spheres collide with

each other. In this case, the algorithm would either cause the spheres to incorrectly

pass through each other without a collision or overlay the spheres with each other

resulting in a violation of volume conservation. The only way to properly handle the

collision is to construct an extrapolation field that has knowledge of incompressibility.

This was addressed by [109, 94] who used divergence free extrapolation to alleviate

the issue by ensuring that the extrapolated velocity is discretely mass conserving.

However, we observed that their proposed solution deforms a falling spherical drop

well before merging takes place. This is because divergence free extrapolation solves a

second projection in the narrow band around the outside of the drop with a free surface

boundary condition applied on the outside of this narrow band. If this boundary

condition is enforced by setting the cells to p = 0 without considering the interface

geometry, the drop deforms. This deformation of the drop can be resolved by using

the second order cut cell method from [32] on the outer edge of the band (which we

point out for the first time in the paper). While this works to improve merging for the

small extrapolation bands required when taking small time steps, when it is applied

globally or over the large extrapolation bands required when taking large time steps

4.3. TAKING LARGE TIME STEPS 83

to remove the discontinuity shown in Figure 4.2, it will produce a velocity field that

deforms the drop far before it gets close to the water surface. Thus, this method,

while applicable for improving merging at small time steps, does not alleviate the

issues with large time steps.

4.3.2 Advection

As discussed in the previous section, closest-point extrapolation methods are unable

to approximate a velocity field far away from the interface that is usable with large

time steps. Thus, we only extrapolate within the standard three grid cell band. Then,

when advecting the velocity we use the conservative method of [60]. They show that

this method works for globally defined velocity fields and large time steps, as well

as small time steps with free surfaces, but do not show that it works for large time

steps with free surfaces. However, the method works in that case as well requiring no

real extensions or modifications. Basically, when cells within the three grid cell band

look back to advect velocity forward, any velocities that are missed that would have

been updated from a larger band are updated in the second step of forward advection

which is required in order to conserve the momentum.

Second order Runge-Kutta particle advection can fail at large time steps if an ac-

curate fluid or extrapolated velocity is not present. We default to advecting the

particles with forward Euler if a velocity sampled within an RK2 step is outside the

extrapolated velocity band allowing us to maintain the higher-order accuracy of the

RK2 method in the presence of accurate velocities while improving the robustness of

the method when such velocities are absent. Level set advection also has problems

at large time steps. While the particle level set method maintains the shape of the

air-water interface at small time steps, it does not typically preserve the amount of

volume within the liquid region. At small time steps, these changes in volume are

small and are unnoticeable in the animation. However, when the particle level set

method is advected for a large time step, this volume loss becomes more apparent

and detracts significantly from the visual plausibility of the simulation. Furthermore,

84 CHAPTER 4. VOLUME CONSERVATION

applying a conservative advection scheme to level set itself is insufficient to resolve

this volume loss because the conservation of signed distance values does not imply

conservation of any physical quantity such as volume. We resolve this by advecting a

color function using the conservative method of [60] in conjunction with the particle

level set surface as discussed in Section 4.4.

4.3.3 Projection

We solve the projection step only in liquid regions while enforcing a free surface

boundary condition. As a result, small regions of “air” (not in a liquid region) can

create large divergences. While this is acceptable with small time steps due to the

restrictions on the motion of the fluid, this results in a large amount of volume loss

when taking large time steps. One method of solving this problem is to explicitly

fill the “air” region and enforce a target divergence [71] such that the cell is exactly

filled in a given time step. However, this method requires the algorithm to detect

whether or not the cell will be filled or overfilled for a given velocity field and time

step. While simple algorithms, such as thresholding based on the size of the “air”

region and the CFL number can be used as an approximate detection scheme, it is

difficult to obtain a set of parameters that are suitable for a general fluid flow. We

use a threshold that causes the algorithm to only fill small “air” pockets. For larger

regions, we instead enforce volume conservation using our conservative color function

treatment. This can sometimes lead to cells with V > 1, and this is treated along

with other advection errors as described in Section 4.4.

4.4 Color Function

In addition to the level set function, we also evolve a color function V which represents

the fraction of liquid contained within a region (usually a single cell in the case of a

uniform grid). Although the color function can be advected using any method, volume

4.4. COLOR FUNCTION 85

is conserved only if the method is conservative. However, numerical smearing, even

in a conservative method, will cause inaccuracies in V ’s spatial distribution. One of

the main approaches for increasing accuracy are the VOF type methods. Early on,

SLIC approximated the interface in each cell using a plane defined by a normal along

one of the Cartesian directions, placing it in a location that accurately represented

the fraction of volume in a cell. Then, advection was carried out by intersecting the

material in a cell with the volume swept out by a cell face along its normal during

a time step. In order to be conservative, this needed to be done in a dimension by

dimension manner so that the flux-swept volumes did not intersect each other. This

leads to a time step restriction corresponding to a CFL number of .5. Additionally, the

dimensional splitting and other inaccuracies lead to flotsam, jetsam, and other visual

artifacts. SLIC was improved via PLIC, which allows the interface to be represented

by any single plane within a cell. However, even these improved methods still have

problems with flotsam and jetsam (see [91] and the references within). [110] attempted

to improve the VOF method with the utilization of a level set method. The level set

is constructed at each time step based on the interface geometry, advected forward

in time, used to compute a normal in each cell to define a tangent plane for the

fluid, and discarded until the next time step. The surface reconstructions of this

CLSVOF method are typically not as smooth as those from the particle level set

method as can seen by the examples of [78, 80], and the resulting visual artifacts will

be highly exacerbated at large time steps. While previous methods have achieved

limited success for CFL numbers slightly larger than 1 [10, 30], the artifacts will be

highly exacerbated for CFL numbers in the range of 10-40 as we take in our examples.

Our method using the color function V is conceptually similar to the VOF method.

If V = 1 or V = 0, the region contains either all liquid or all “air” respectively. If

0 < V < 1, the region contains both liquid and air. First, to compute the initial

data, we compute the color function from a piecewise linear rasterization of the level

set. Note that when φ is changed for fluid sources, the color function also needs to

be modified to maintain consistency. Then we advect the color function forward in

86 CHAPTER 4. VOLUME CONSERVATION

(a) (b) (c) (d) (e)

Figure 4.4: Correcting Numerical Dissipation in the Color Function: Figure 4.4(a)
shows the color function after advection. Due to numerical dissipation, there are
regions inside the level set (φ ≤ 0) with a color function value V = 1 (blue), V <
1 (cyan), and V > 1 (magenta) along with regions outside the level set (φ > 0)
with a color function value V = 0 (black) and V > 0 (green). Figures 4.4(b),
4.4(c), and 4.4(d) demonstrate the results after applying our first, second, and third
compression step respectively. We then apply a volume-conserving diffusion algorithm
which corrects for errors in compression (usually located in regions of high curvature)
to obtain a more accurate color function surface representation shown in Figure 4.4(e).

time as per

Vt + u · ∇V = 0 (4.6)

using the conservative method of [58]. Note that we do not use any of the diffusion

methods used when advecting smoke density [60]. Our experiments show that dif-

fusion is detrimental in the case of color function advection, since diffusion is based

on the heat equation which tends to move the interface faster in regions of higher

curvature than lower curvature. This problem is alleviated for momentum advec-

tion because diffusion is not applied across the interface, which is well determined

before the momentum advection step. The conservative advection method can also

result in excess volume accumulating where fluid collides with a rigid body due to the

clamping of semi-Lagrangian rays to the surface of the object. This can result in an

undesirable viscous fluid appearance which we avoid by performing explicit damped

collisions with rigid bodies.

After the color function has been conservatively advected forward in time, it will

still smear out due to numerical dissipation. We apply a compression procedure

diagrammed in Figure 4.4 to the color function after it has been advected forward in

time. First, we compute the .5 isocontour of the color function. Then, we aim to set

all cells within the .5 isocontour to have V = 1 and all cells outside the .5 isocontour

4.4. COLOR FUNCTION 87

to have V = 0. There are two primary discrepancies that need to be addressed.

The first problem is that V values outside the isocontour can be more than 0 due to

numerical smearing. The second problem is that V values inside the isocontour are

not necessarily 1 (can be either more than or less than 1). Although interior cells

with V > 1 can result from errors in advection, this can also occur from the collapse

of air pockets as discussed in Section 4.3.3. To correct for these errors, we compute

differences between the target (0 or 1) and current color function value and then

move this difference in the direction of the gradient of V to the interface. For V > 0

outside the interface, we move in the direction of the gradient of V until we are at

a location 2∆x interior to the V = .5 isocontour. Then, we distribute the difference

in color function value to the neighboring cells around this location (excluding cells

lying within rigid bodies) in weighted proportions until V = 1 in each cell. If all of

the difference cannot be distributed at these neighboring cells without overflowing

the cells, the remainder of the difference is placed in a location obtained by marching

outwards along the gradient of V . For the cells on the interior of the V = .5 isocontour

with V > 1 the difference in color function value V − 1 is distributed to the surface

in the same way starting from a distance of 2∆x inside the surface. In the third

case, where V < 1 for interior cells, we fill V for each cell to 1 using color function

values from the surface by distributing a negative value V − 1 starting 2∆x outside

the interface and marching inwards in a similar manner in the opposite direction as

the first two cases. Both our advection scheme and compression scheme guarantee

that values of V < 0 cannot occur; however, the compression method can be modified

to account for these if a different advection scheme that can result in negative values

is used. The compression is done in a Gauss-Seidel fashion using a single iteration

(multiple iterations could be used but are not needed since its done at every time

step), and thus the order in which the cells are visited matters. One might want to

use a method such as Gauss-Jacobi to reduce bias but this will require more iterations,

and we have found that Gauss-Seidel is satisfactory for our purposes. This is partially

because we couple it with particle level set method for accuracy whenever possible

(see Section 4.5).

88 CHAPTER 4. VOLUME CONSERVATION

4.5 Coupling

First, we advect both φ and V forward in time using semi-Lagrangian advection for

φ and conservative semi-Lagrangian advection for V . We then correct the values of

φ using the particles as in the particle level set method, and subsequently reinitialize

φ. However, we stress that the second particle correction of the reinitialized level set

is not yet applied, and the color function is not yet compressed. At this point, we

construct a distance function from the color function in almost the same way that

[110] construct it at the beginning of the time step. That is, we first use a VOF

construction of the color function, computing a normal from the gradient of V and

the placement of the tangent plane in the cell from the value of V itself, and then

initialize values of the signed distance function φV based on the tangent plane in

that cell. Nearby cells are initialized with values from the fast marching method.

Unlike [110], we compute the normals directly from the gradient of V as opposed to

an advected φ. This is because an advected φ function would be highly inaccurate

due to the issue of velocity extrapolation.

While the color function does not represent the interface as accurately as the particle

level set method, it is often the only reasonably accurate interface representation

available when taking large time steps demonstrated by the yellow region of Figure 4.2.

Thus, our aim is to use the particle level set method wherever possible in order to gain

visually pleasing surfaces and only to use the color function to represent the surface

where the level set representation has lost large amounts of mass such as shown in

Figure 4.5. Generally speaking if the interfaces agree we use the particle level set

representation of the interface. We say that the two interfaces agree if they do not

differ by more than .5∆x in distance. At every cell (i, j, k) in the computational

domain, we compute a blending parameter αi,j,k = |φi,j,k − φVi,j,k|/∆x− .5 and clamp

it in the range [0, 1]. Subsequently, we compute the blended level set function φB

via φBi,j,k = (1 − αi,j,k)φi,j,k + αi,j,kφ
V
i,j,k. Note that the minimum pre-clamped value

of αi,j,k is −.5 and thus when the interface values agree to within half a grid cell, we

use the level set version. For αi,j,k ≥ 1, we use the color function representation, and

4.5. COUPLING 89

(a) PLS method (b) Our method

Figure 4.5: Figure 4.5(a) shows the result we get after taking a large time step using
the PLS method. Because closest-point extrapolation discussed in 4.3.1 is unable
to provide a good approximation of the velocities in the air region, backward semi-
Lagrangian advection fails to accurately advect the level set causing the ball to become
clipped at the bottom. Figure 4.5(b) shows the same frame using our method where
we are able to reconstruct and subsequently maintain the shape of the ball even when
taking a very large time step.

otherwise we interpolate between them. In order to avoid visual kinks in φB, α is

smoothed locally on the grid before linearly interpolating φ and φV to obtain φB.

Next, φB is initialized to a signed distance function. In order to prevent spurious

particle corrections to the blended level set representation, a particle is deleted if

α > 0 at the closest surface cell. This signifies that the closest interface in the cell

has changed from the using the φ obtained from PLS and is instead using the color

function to help define the interface, thus rendering the particle correction incorrect

in that cell. Particles are then only reseeded in the areas with α > 0 in order to

preserve sharp features that cannot be captured by the level set alone. Finally, the

reinitialized φB is corrected via particles in the usual fashion of the particle level set

method.

In summary, we advect the level set function φ, correct it with particles and reinitialize

it, advect the color function V , contour it with a VOF method and produce a signed

distance function representation φV , blend φ and φV to obtain φB, reinitialize the

90 CHAPTER 4. VOLUME CONSERVATION

result, delete particles where the color function representation is being used, reseed

particles around the new interface generated by the color function, and correct the

combined level set using the particles. We denote the final result once again as φ.

At this point, we have the desired level set reconstruction but a smeared out color

function. We use the compression method listed in Section 4.4 to compress the color

function using the more accurate normals of φ instead of the less accurate gradients

of the color function. Moreover, we can accelerate the process of finding the zero

isocontour and nearby locations using the fact that φ is a signed distance function.

We stress that this compression does not use isocontours or geometric information

from V in any way but instead strives to compress V into the newly generated φ.

While this compression method works well, we have noticed that in regions of high

and low curvatures compression tends to produce errors near the interface such as

V > 0 color function values accumulating on the peaks of the waves. (see Figure 4.4).

Therefore, we propose a diffusion based algorithm, similar to the ones found in [23, 60]

to improve the color function’s surface representation. We take the union of the

surfaces given by φV and φ and use compression outside this region and diffusion

inside. We diffuse the error e = V −V φ, where V φ is the color function obtained from

a piecewise linear rasterization of φ, in the color function relative to the level set close

to the surface. We have also experimented with solving the Poisson equation with

the appropriate target divergences to generate a velocity field inside the union which

works as well but is much more expensive than using this sweeping method. After

the compression and diffusion steps, the color function yields an improved surface

representation (as shown in Figure 4.4) and in order to improve the visual appearance

of the final surface, we repeat the blending process using the current V and φ.

4.6. RESULTS 91

Figure 4.6: Sphere of water dropped onto a stationary flat surface of water at a
resolution of 2563. This example ran with a CFL number ranging from 10-40. The
early part of the simulation when the water first starts to fall was simulated with a
smaller CFL number. The later parts of the simulation were ran with a higher CFL
number.

Figure 4.7: Dam break water example at a resolution of 2563. This example ran with
a CFL number ranging from 10-40. The early part of the simulation when the water
first starts to fall under the influence of gravity was simulated with a smaller CFL
number. The later parts of the simulation were ran with a higher CFL number.

4.6 Results

We demonstrated our method on a number of 3D examples as seen in Figures 4.6,

4.7, 4.9, 4.10, and 4.8. We first ran a baseline simulation for each example using the

standard PLS method at a CFL number of 1 at resolutions of 643 and 1283. However,

these simulations were too slow to run in a practical amount of time at the higher

resolutions such as 2563. A CFL number of 1 means that advection does not move

information farther than 1 grid cell in any time step. Then, we then ran both the

92 CHAPTER 4. VOLUME CONSERVATION

Figure 4.8: Water pouring into a box from two opposite-facing sources at a resolution
of 2563. This example ran with a CFL number ranging from 10-40. The earlier section
of the simulation when the sources are first activated until the water first hits the
bottom of the container was simulated with a smaller CFL number. The more active
parts of the simulation which occur after the water from the sources hits the bottom
of the container were ran with a higher CFL number.

Figure 4.9: Water pouring into a box over a rigid sphere at a resolution of 2563.
This example ran with a CFL number ranging from 10-40. The earlier section of the
simulation from when the source is first activated until the water first hits bottom
of the container and the later section after the source was turned off and the water
starts to calm were simulated with a smaller CFL number. The more active parts of
the simulation which occur between the water from the source hitting the bottom of
the container and the source turning off were ran with a higher CFL number.

standard PLS method and our method at a high CFL number of 40 at resolutions

643, 1283 and 2563. For resolutions of 643 and 1283, this equates to running at

the frame rate (meaning one time step per frame) since the maximum CFL number

was approximately 5 for 643 resolution simulations and approximately 20 for 1283

resolution simulations. We also ran our method at a resolution of 5123 in order to

demonstrate the large resolution simulations that can be obtained by our method at

high CFL numbers. For this simulation, we primarily ran with a CFL number of

4.6. RESULTS 93

Figure 4.10: Water pouring into a box from two opposite-facing sources at a resolution
of 5123. This example ran with a CFL number ranging from 10-60. The earlier section
of the simulation when the sources are first activated until the water from the sources
collides was simulated with a smaller CFL number. The remainder of the simulation
was ran with a higher CFL number. Note that we increase the amount of absorption
during rendering in order to make the fine scale details more apparent.

60. Figure 4.11 shows a comparison between our method and the particle level set

method using similar amounts of computation. Figure 4.12 shows a comparison of

the volume between the traditional PLS algorithm and our method at a resolution

of 1283. Note the large amount of volume lost without using our method. Compared

to the standard particle level set method, the additional steps in our method cause

it to execute about twice as slowly for a given time step. However, since our time

step is allowed to be 40 times larger, our method approximately achieves a 20 times

increase in performance on frames where the CFL number is close to 40 or greater.

For frames in specific simulations where the CFL numbers are smaller than 40 (e.g.

stationary sphere before it begins falling into water under the influence of gravity),

we achieve smaller increases in performance. We emphasize that this is due to the

maximum time step size being restricted by the user-specified frame rate for the

simulation. Similarly, for the 2563 resolutions, we ran both the standard PLS method

and our method. Note that when running this large of a simulation, our CFL number

becomes limited because our current MPI implementation divides the computational

domain into a number of smaller domains and we have not generated the code to

94 CHAPTER 4. VOLUME CONSERVATION

Figure 4.11: Comparisons between our method and the particle level set method using
similar amounts of computation. The left figure shows the correct answer obtained
by running the particle level set algorithm at a resolution of 2563 at CFL 1. The
middle figure shows the results of running our algorithm at a resolution of 2563 at
CFL 16. This requires a similar amount of computation to running the particle level
set method at a resolution of 1283 at CFL 1 which gives the results shown in the right
figure. Our algorithm has the same degree of numerical viscosity as the 2563 particle
level set simulation but requires the same amount of computation as the 1283 since
the resolution is doubled in each dimension and the CFL condition becomes twice as
strict.

cross more than one processor boundary (although this can be done). The limitations

on the CFL number of simulations due to the size of the MPI domains bring up the

important issue that with a CFL number equal to the size of one of these subdomains,

a ghost cell implementation requires 27 times more data for ghost cells than the actual

simulation (i.e. each grid being replicated in all Cartesian directions and partially

replicated in the diagonal directions) which can quickly deplete memory resources.

In the standard ghost cell implementation, it might be advantageous for MPI code

(although unnecessary for threaded code) to change the boundary process to have

each grid request data from the neighboring grids that contain the needed grid cells,

sending that request out to other processors which send the information back. Even

4.6. RESULTS 95

Figure 4.12: Volume vs. time for four different simulations. The red and blue lines
represent the liquid volume present in the dam break simulation at frame rate. Notice
how our method (red) fully conserves volume while the PLS algorithm (blue) loses
a tremendous amount of volume. The green and purple lines represent the volume
present in a simulation with water from a source flowing over a ball. Notice how the
volume increases linearly until the source is turned off when using our method (green)
but decreases slowly when using the PLS algorithm (purple).

so, if every grid cell in the domain is requesting data from another processor, this

is equivalent to copying entire grids from one processor to another at every time

step, and thus while doubling the CFL number does halve the required number of

pressure solves and other steps such as those involved in the particle level set method,

it increases the communication cost. Thus, one cannot indefinitely increase the CFL

number although we noticed issues in visual accuracy at lower CFL numbers than

would lead to concerns with communication bottlenecks. For example, during the

first step of a simulation with a source, the velocities are purely horizontal and thus

when a large CFL number is taken, the liquid will move a large distance parallel to the

ground despite the fact that the fluid should be falling. One alternatively could apply

gravity first but that would mean advecting in a divergent flow field which generates

problems with objects advecting through solid walls. Instead, these problems are

partially resolved by running with a smaller CFL number when such visual artifacts

96 CHAPTER 4. VOLUME CONSERVATION

are present which typically occurs in slow moving fluid flows.

It is important to note that although we can maintain a similar time step size at

larger resolutions, the algorithm does scale with the number of grid cells. Therefore,

the simulation is a factor of 8 slower when the grid size doubles for a fixed time step

(which requires doubling the CFL number of the simulation). However, a number

of methods including [59, 77] improve the scalability when the resolution changes.

These methods can be used in conjunction with our method to create even faster

simulations.

4.7 Conclusion

We have presented a novel method method for accurately simulating incompressible

flow even when taking time steps that are more than an order of magnitude larger

than implied by the CFL condition. We accomplish this by conservatively advecting a

color function representing the fraction of volume contained in each cell along with the

particle level set and using the color function to compute an accurate representation

of the surface where the particle level set representation fails to suffice. This allows

our method to maintain volume and subsequently achieve visually accurate results.

Moreover, we have presented a general framework for combining an interface tracking

method with a volume tracking method. Investigating the use of other interface

tracking methods and volume tracking methods for use within this framework is a

potential subject of future work.

Chapter 5

Coarse Grid Projection

Large scale fluid simulation can be difficult using existing techniques due to the high

computational cost of using large grids. This chapter presents a novel technique for

simulating detailed fluids quickly. Our technique coarsens the Eulerian fluid grid

during the pressure solve, allowing for a fast implicit update but still maintaining the

resolution obtained with a large grid. This allows our simulations to run at a fraction

of the cost of existing techniques while still providing the fine scale structure and

details obtained with a full projection. Our algorithm scales well to very large grids

and large numbers of processors, allowing for high fidelity simulations that would

otherwise be intractable.

5.1 Introduction

Physical simulation of fluids is one of the most interesting and challenging problems

because of the amount of small scale details that realistic fluids exhibit. Although

many authors such as [29, 105, 25] have used grid-based techniques to produce visually

compelling results, the size of the grids that these techniques can use is limited by

the amount of computational power available.

97

98 CHAPTER 5. COARSE GRID PROJECTION

As a consequence many authors have developed techniques that add details to these

simulations with noise. For example, Kolmolgorov noise (see [106, 56, 95]) and curl

noise (see [6]) can be used to enhance the visual fidelity of fluid simulations by coupling

the noise to the incompressible Navier-Stokes equations producing a more detailed

flow. Alternatively, [50] and [87] determine where to add noise using information from

the existing simulation and then add it as a post-process which allows them to add

noise where it is best suited. Other techniques such as [100] both determine where to

add noise and couple the noise to the Navier-Stokes equations. All of these techniques

are successful at adding details but are nonphysical and can produce significantly less

realistic results than simply simulating with a higher resolution grid.

Another approach is to improve the baseline simulation on the existing grid. This

can be done by using higher order methods in space, such as BFECC, QUICK, and

MacCormack methods (see [18, 46, 101, 82]), or in time, such as Runge Kutta. One

could also work to maintain certain invariants such as energy (see [83]). Although

these methods increase the accuracy and fidelity of the resulting simulation, they are

more expensive than traditional fluid simulation and are still limited by the Nyquist

frequency of the grid. To increase the grid resolution while keeping the increase

in cost to a minimum, adaptive grid techniques were introduced such as AMR [3]

and octrees [69]. These techniques are effective at reducing the computational cost

in cells where there is not much detailed motion while maintaining details where

needed. However, the increased complexity of using these complicated structures

both increases computational cost and hinders the ability to design robust numerical

methods.

In contrast to grid-based approaches, particle-based methods, which were first intro-

duced in [96] and later expanded on by [17, 85], are not limited by the resolution of

the grid. However, these approaches do not store the connectivity of the surface and

require additional computational costs to keep track of the surface and to re-mesh.

Furthermore, these methods increase in cost as they approach the incompressible

limit, and thus many authors use weakly compressible equation-of-state formulations.

There has also been work on combining particle and grid-based approaches. [31] uses

5.1. INTRODUCTION 99

a combination of grid and particle-based approaches to produce realistic simulations

at variable speeds. [102] introduced a particle-based method to add vorticity to grid-

based simulations using particles that are able to accurately track the vorticity of

the simulation and [90] extended it to work well with objects. Although these tech-

niques do add details at little cost, they are still limited by the base resolution of the

simulation.

In order to handle very high resolution grids, [115] introduces a reduced order model

that can handle very large grids at a small cost. However, the use of basis functions

lacks the physical realism and details that are achieved through traditional grid-based

techniques. Moreover, [49] state that model reduction limits the motion of the model

to a pre-specified basis, and any attempted motion outside this basis is artificially

suppressed. They further state that since the main advantage of physically based

techniques is their ability to automatically capture novel dynamics, such suppression

is unacceptable. [95, 42] introduce methods that can run large scale two-dimensional

algorithms and then can extend the results to three dimensions. Although these do

produce visually compelling results in some instances, the two dimensional simulations

are not a very good approximation of the three dimensional behavior for the more

general case.

Recently, there has been a large interest in methods for creating a higher resolution

result from a lower resolution simulation. [88] introduced a method for increasing

the resolution of a simulation to make it more directable, but this also increases the

cost. In liquids, authors have worked to track the surface of the liquid on a higher

resolution grid than the underlying fluid simulation (see e.g. [48]). [122] uses the

vortex particle method in order to increase the resolution of a simulation without the

cost of running a simulation on a higher resolution grid. They demonstrated that the

vortex particle method of [102] inherently contains additional computational detail

which is lost when mapping it onto the underlying grid, and preserve more of it by

mapping it on to the higher resolution grid.

In contrast to these methods which rely on a low resolution core simulation, we

100 CHAPTER 5. COARSE GRID PROJECTION

propose a method that runs on a high resolution grid but creates a divergence-free

velocity field using a coarser grid to speed up the calculations. This allows us to run

simulations using higher resolutions while significantly reducing the computational

cost, and possibly more importantly, run simulations that scale more linearly on

large computational frameworks.

5.2 Performance Analysis

Simulation performance remains a large obstruction to using very large grids. To

alleviate this issue we must develop techniques that are not only more efficient but

can take advantage of the computational power available. This means that we need

to be able to utilize not only all the computational power on one machine but also

be able to run simulations across many machines without obtrusive communication

costs. Our method improves both the performance on one core and the scalability

across many cores.

5.2.1 Scaling

Traditional grid-based algorithms have a cost

C = Cl + Cp, (5.1)

where Cp is the cost of the projection and Cl is the cost of the remainder of the

algorithm. When we increase the resolution of the grid in three dimensions by a

factor of k this becomes roughly

Ck ≈ k4Cl + k4Cp. (5.2)

This is because as we double the size of the grid we have eight times as many cells

and each cell is half as wide, requiring twice as many time steps (when assuming a

5.2. PERFORMANCE ANALYSIS 101

CFL condition). Note that k4Cp is only an approximation of the real cost of the work

required to solve the Poisson equation since the matrix inversion does not generally

scale linearly with the size of the matrix. One could use multi-grid methods, limit

the number of conjugate gradient iterations, etc. in order to make this scale more

linearly, but Cp will still scale no better than k4.

Our goal is to reduce the cost of this system without losing the fine scale details of

a higher resolution simulation. To achieve this, we break up the projection into a

single projection on a coarser grid, which takes time Ccp, and a number of smaller

projections that run fully decoupled on individual coarse grid cells, costing Cfp. This

makes the cost for our algorithm

C = Cl + Ccp + Cfp. (5.3)

If we refine our simulation grid, but not our coarse grid, Ccp scales only with the

number of time steps, and the entire algorithm scales roughly as

Ck ≈ k4Cl + kCcp + k4Cfp. (5.4)

Even if we assume that Ccp +Cfp > Cp, when we increase the resolution, for some k,

kCcp + k4Cfp < k4Cp. However, we found that Ccp + Cfp > Cp only for very small

resolutions (less than 16×16×16) meaning that for reasonably sized examples or large

examples our method runs significantly faster than traditional grid-based methods.

We note that in our experience, about 90% of the time spent in a one-phase smoke

simulation is spent during the projection meaning that Cp easily dominates Cl. From

a complexity point of view this makes sense since the advection in Cl requires touching

every grid point and its neighbors approximately once whereas a conjugate gradient

algorithm would require touching every grid point and its neighbors once for every

iteration of the conjugate gradient solve.

In spite of the analysis above, in general it seems that one of the k’s can be removed

from Equation (5.4) instead getting Ck ≈ k3Cl + Ccp + k3Cfp by keeping the same

102 CHAPTER 5. COARSE GRID PROJECTION

Figure 5.1: Smoke flowing around a moving sphere with on a 512× 1024× 512 grid.
(Left) uses a CFL number of 0.9 and takes time steps half as large as those generally
taken on a 256× 512× 256 grid. (Right) uses a CFL number of 2.2 making the time
steps around 2.5 times as large.

timestep on the finer grid that was used on the coarser grid. Semi-Lagrangian advec-

tion (see [105]) makes this possible. Although we do not expect this to work for an

indefinite number of refinements, for one or two refinements, we have achieved good

results without halving the time step (see for example Figure 5.1).

5.2.2 Multi-core and Multi-processor Machines

As chip technology continues to advance, the use of multi-core and multi-processor

machines and GPUs becomes more and more important, and algorithms such as [5]

that can take advantage of this with little cost are able to run much more quickly.

Simulating one-phase smoke typically consists of two primary steps, the explicit ad-

vection step and the implicit projection step. Looking at Equation (5.1), Cl is the

advection step and Cp is the projection step. The advection step easily scales to

multiple cores and multiple processors as one can simply break up the grid into sev-

eral distinct parts and run advection on each part individually. The only issue then

becomes how to deal with the boundaries. If the memory is shared, one can devise

various strategies such as keeping separate copies of the information to alleviate issues

with writing to data that needs to be read. There are also other strategies such as

5.2. PERFORMANCE ANALYSIS 103

red/black domain decomposition schemes, locking, etc. Using these strategies, one

can usually expect to diminish the computational overhead of the overlapping bound-

aries. However, for large problems, where many computational nodes are desired, one

would need a huge many core shared memory machine with a very large amount of

memory – which is quite expensive and can lead to issues with cooling and energy. If

algorithms that run on large computers become less tightly coupled, they require less

synchronization and thus less shared memory, allowing cluster cores to be physically

further apart (even on separate machines).

Thus, a more typical scenario is to switch to a non-shared memory model where

memory might be shared by clusters of cores but is not shared between different

clusters. Instead, each cluster has its own RAM. Although much more practical, this

large non-shared memory infrastructure leads to a significant computational overhead

as it requires data communication. That same overhead is also present when trying

to utilize graphics cards. For the advection step Cl, boundary data only needs to

be copied between clusters of cores once for each time step. Note that to do this

a CFL condition is assumed to bound the amount of cells that need to be copied.

Projection, on the other hand, requires at least one copy for each iteration of the

solver. For a typical conjugate gradient solver this means that we have to copy or

exchange data on the boundaries before every iteration of our solver. If we were to

use a multi-grid method instead, we would still need many communications for each

coarsening and refinement step in a V-cycle and several V-cycles are typically required

for convergence.

Practical experience has shown that the computational bottleneck of exchanging

boundary information leads to the projection scaling relativity poorly and domi-

nating the cost of the simulation even more so than on a single core. Our algorithm

on the other hand uses a far less expensive global solve, Ccp, on a coarse grid, which

increases its computational demands much slower than usual as the simulation grid

is refined (its coefficient is k, not k4, in Equation (5.4)). An extremely important

aspect of this algorithm is that the computational cost of increasing the resolution

of the grid is mostly contained in Cl and Cfp as can be seen in Equation (5.4), and

104 CHAPTER 5. COARSE GRID PROJECTION

both Cl and Cfp scale extremely well with the number of processors (almost perfectly

linearly). The reason for this is that it is comprised of a large number of independent

tasks. During the computations of Cfp, no communication of boundary information

is required once the boundary conditions are initially set. The result is that on a

large number of processors our algorithm is dominated by Ccp, which is significantly

less expensive than Cp.

5.2.3 Multiphysics

For multiphysics code that is far more complex than a simple one-phase smoke sim-

ulation, such as the particle level set method [20], there are many additional costs of

the algorithm to consider. For example, a typical PLS simulation contains steps for

advecting particles and integrating them to and from the level set. On a single proces-

sor this means that Cl is significantly more expensive than in the simple smoke case,

and as a result, the speed improvement obtained from converting Cp to Cfp + Ccp is

smaller. However, these additional steps often scale well in multi-processor or multi-

core situations as it is simple to assign particles to a certain processor or core and let

most of the computations for the particles happen independently on those computa-

tional nodes. Doing this only adds a few additional exchanges meaning that in this

case Cp still dominates as one refines the grid. Thus, there is still a large benefit to use

Ccp+Cfp instead. In other words, when going from Equation (5.1) to Equation (5.2),

the part of the cost, Cp, that scales badly is multiplied by k4 whereas when going

from Equation (5.3) to Equation (5.4) the part of the cost that scales badly, Ccp, is

only multiplied by k, and as we stated above, it is not clear that a full k is required

(see Figure 5.1).

5.3. MAKING A DIVERGENCE FREE FLOW 105

5.3 Making a Divergence Free Flow

In order to use a coarser projection step we must determine how to make a coarser

grid from our simulation grid, solve on coarser grid, and then map the results to our

simulation grid in a way that maintains the divergence-free property. Our algorithm

for one-phase smoke proceeds as in [25], except instead of solving the Poisson equation

on the fully resolved fine grid we do the following:

1. Map the velocity field to a coarse uniform grid (5.3.2)

2. Make the resulting field divergence free on that coarse grid (5.3.3)

3. Map these velocities back to our fine simulation grid (5.3.4)

4. Make the resulting field divergence free on the fine grid (5.3.5)

5.3.1 Navier-Stokes Equations

On the fine simulation grid, we solve the inviscid, incompressible Navier-Stokes equa-

tions for the conservation of mass and momentum, given by

~ut + ~u · ∇~u = −1

ρ
∇p+ ~f (5.5)

∇ · ~u = 0, (5.6)

where ~u is the velocity field of the fluid, ρ is the density of the fluid, ~f are any external

forces (such as gravity), and p is the fluid pressure. We solve these equations by first

calculating an intermediate velocity field ~u? using

~u? − ~un

∆t
+ ~un · ∇~un = ~f (5.7)

106 CHAPTER 5. COARSE GRID PROJECTION

and subsequently adding in the pressure forces via

~un+1 − ~u?

∆t
= −1

ρ
∇p, (5.8)

where the pressure is calculated by solving a Poisson equation of the form

∇ · 1

ρ
∇p̂ = ∇ · ~u? (5.9)

and p̂ = p∆t.

Equation (5.7) is solved on the fine simulation grid and represents Cl. The resulting

velocities ~u? are then mapped to coarse grid (step 1). Equations (5.8) and (5.9)

representing Ccp are then solved on the coarse grid (step 2). After determining ~un+1

on the coarse grid, we then determine ~un+1 on the fine grid, as represented by Cfp

(steps 3 and 4).

5.3.2 Mapping to the Coarse Grid

Conceptually, our scheme was designed by taking a fine simulation grid and perform-

ing binary coarsening up to some level as is done with octrees. This results in both

a fine and coarse grid that we could use in our algorithm. However, our framework

is actually much more flexible and resembles that proposed in [68]. They started

with a base level grid and place an octree in each cell so that the resolution could be

increased locally. This was done to lower the computational cost of accessing octree

nodes by removing the top of the tree which replaces some number of levels with

uniform grid access. Their octrees could be any size including no refinement at all,

see figures 5.2(a) and 5.2(b). The deepest levels of their octrees would represent the

simulation grid in our framework whose degrees of freedom we would like to upgrade

and their highest level represents the uniform coarse grid in which we will carry out

the projection Ccp. However, our method for Cfp is general enough to not only sup-

port different levels of octree refinement as shown in figures 5.2(a) and 5.2(b) but to

5.3. MAKING A DIVERGENCE FREE FLOW 107

(a) (b)

(c) (d)

Figure 5.2: A refined grid with four coarse cells. (a) A coarse cell with no refinement.
(b) A coarse cell with an octree inside (c) A coarse cell with a uniform grid inside.
(d) A coarse cell with multiple levels of uniform grids inside.

also support uniform grids inserted into each coarse grid cell as shown in Figure 5.2(c)

or even multiple levels of uniform grids as shown in Figure 5.2(d). This flexibility

comes from our method for solving each coarse cell individually. However, we note

that for most of our examples we chose to use uniform grids within each coarse cell

as in Figure 5.2(c).

From the degree of freedom standpoint, every face on the finest resolution of all grids

represents one degree of freedom for velocity whereas each face of the base coarse grid

represents a degree of freedom for a much coarser set of velocities. We map the fine

grid velocities to the coarser grid by using an area-weighted average of all the fine

108 CHAPTER 5. COARSE GRID PROJECTION

grid velocities that are contained by a coarse grid face. In other words,

~u?c =
1

n

∑
f∈faces

Af~u
?
f (5.10)

where faces is the set of fine scale faces that overlap with the coarse face c, Af is the

area of the fine face, and n is the number of elements in faces. One could liken this

to methods that map particles to a background grid such as the PIC/FLIP method

proposed in [127], the vortex particles proposed in [102], or the SPH method proposed

in [71]. All these authors had proposed methods for mapping from the velocity degrees

of freedom defined on particles to a background coarse grid, performing computation

on the coarse grid, and then mapping information back. Contrary to these techniques

in which the typical particle to grid mapping aims to have every particle influence

the coarse grid, we do not map velocity degrees of freedom that are not incident on

the coarse faces, meaning that they have no influence on the coarse grid. We admit

that it is desirable to map more degrees of freedom; however, it turns out that our

mapping allows for a more efficient handling of boundary conditions and is one of the

key ideas that allows Cfp to scale linearly with the number of processors.

5.3.3 Coarse Grid Projection

Although we can use the standard Navier-Stokes equations for the coarse projection

in the absence of objects, we must modify these equations when dealing with objects.

This is because our objects are rasterized on the fine simulation grid, and a coarse

grid face can thus contain a fraction of an object. Rasterizing the object on the fine

grid allows us to maintain fine scale detail near the objects regardless of the size of

the coarse grid. Following [69], we used the volume-weighted Poisson equation given

by

Vcell∇ ·
(
~u? − 1

ρ
∇p̂
)

= 0. (5.11)

5.3. MAKING A DIVERGENCE FREE FLOW 109

We can then write

Vcell∇ · ~u? = Aface
∑

f∈faces

(
~u?f · ~nf

)
βf + (~us · ~nf) (1− βf) (5.12)

and

Vcell∇ ·
(

1

ρ
∇p̂
)

= Aface
∑

f∈faces

((
1

ρ
∇p̂
)
f

· ~nf

)
βf (5.13)

where ~us is the velocity of the solid and βf is the fraction of the face that is not

covered by a solid. Using Equation (5.11) with definitions (5.12) and (5.13) instead

of Equation (5.9) on the coarse grid, allows for high fidelity modeling of stationary

and moving solids as shown in figures 5.7 and 5.6. Note that in equations (5.12) and

(5.13) we have factored Aface out in front of the sum as opposed to [69]. This is

because on coarse grid all of our faces have the same size. As long as this is true,

one can omit Aface from the equations and still retain symmetry. Otherwise it is

more appropriate to include Aface inside the summation. We would also like to stress

that using the volume-weighted Poisson equation is only necessary in the presence of

objects or octree solves.

5.3.4 Mapping to the Fine Grid

After solving for a divergence free field on the coarse grid, we then need to map

results of equations (5.8) and (5.9) back to the fine simulation grid. As mentioned

earlier, many particle methods do this; however, whereas particle based methods

require every particle degree of freedom to receive information from the coarse grid,

we instead only map to the fine grid faces that are incident upon the coarse grid faces

which we once again stress is a key to our algorithm. As is widely done in PIC/FLIP

type methods, one can map either velocities or changes in velocities back to the fine

degrees of freedom (see e.g. [127]). In other words, our new velocities for a given fine

simulation grid face are:

~un+1
f = α~un+1

c + (1− α)(~u?f + ~un+1
c − ~u?c) (5.14)

110 CHAPTER 5. COARSE GRID PROJECTION

where α is a constant between 0 and 1, ~uc are the velocities on our coarsened uniform

grid and ~uf are the velocities on the fine simulation grid. Note that in the case with

α equal to 1, every fine grid face is set to have the same velocity as the coarse grid

face containing it. In this case, the total flux of material into or out of any coarse

grid cell is defined by the local fluxes of the fine grid and is still divergence free,

although using α equal to 1 severely dampens the flow field. When α equals 0 the

fine grid velocities ~u?f simply acquire a change in velocity equal to the change that

the coarse grid experienced. Because we created the coarse grid velocity ~u?c with an

area weighted average of the ~u?f incident upon the face, adding this change to every

fine grid cell incident on the face creates a net flux of 0 through the cell and thus a

divergence free flow field as defined by the fine grid faces. This is much less dissipative

because it uses a constant velocity difference to update the fine grid cells as opposed

to a constant velocity. Note that when α is not 1 or 0, since the divergence operator

is linear, one still obtains a divergence free field on each coarse cell as defined by the

fine grid velocities. Moreover, one can blend a degree of dissipation into the numerical

method as is typical of a PIC/FLIP scheme. In our examples, we found that lower

values for an α create more detailed and dynamic results and thus use a value of 0.

Of course if one desires the flow to be more damped a higher value of α could easily

be substituted. However, in our examples, we found that additional damping was

not needed. After the mapping, we must determine the fine grid velocities interior to

each coarse grid cell to make a divergence free velocity field.

5.3.5 Fine Grid Local Projections

The method we used for mapping to the coarse grid, carrying out the coarse grid

projection, and mapping back both gives continuity across each coarse grid cell as

defined by the fine grid velocity degrees of freedom as well as a divergence-free coarse

velocity field. In order to create a divergence-free field on the fine grid, we first

consider each coarse grid cell to be its own unique computational domain. ~u? is given

for every interior degree of freedom as was computed previously by Equation (5.7).

5.3. MAKING A DIVERGENCE FREE FLOW 111

We then solve equations (5.8) and (5.9) for those interior degrees of freedom with fixed

velocity boundary conditions for every fine grid velocity incident on the boundaries

of this coarse grid cell.

If the coarse grid cell is not refined as in Figure 5.2(a), nothing needs to be done.

If the coarse grid cell contains a uniform grid as in Figure 5.2(c), one simply solves

equations (5.8) and (5.9) on that uniform grid. If the coarse grid cell contains an

octree as in Figure 5.2(b), one can simply use the octree method of [69] in order to

find a divergence-free set of velocities for the interior degrees of freedom. We also

propose a new method that can be used based on hierarchical subdivision. Consider

Figure 5.2(b), looking only at the first level of octree refinement. In this case, four

new degrees of freedom are added, two vertical velocities and two horizontal velocities.

For this example, Equation (5.8) has four unknowns at the center of each of the four

computational cells. However, because there are Neumann boundary conditions, the

system has a rank 1 degeneracy and one unknown pressure can be removed. Thus we

can set up a 3× 3 system of equations and solve with a fast direct method. For faces

between cells that are not refined any further, that represents the final velocity degree

of freedom. This is true for the bottom and left velocities in Figure 5.2(b). For cells

that are refined further, e.g. the top and right velocities in that figure, one can use

Equation (5.14) to map either the velocities or change in velocity to those faces. One

would then consider each subcell such as the upper right hand corner of Figure 5.2(b)

and repeat the process by subdividing once and solving the 3× 3 system.

In two spatial dimensions, these 3× 3 matrices are very quick to invert and this leads

to a very quick hierarchical solver that can be efficiently implemented for example on

a GPU. In three dimensions there are eight pressures and seven degrees of freedom,

leading to a 7×7 matrix which can also be solved quickly. One might also imagine us-

ing the hierarchical subdivision only to do the first level and using the octree solver to

solve the upper right hand corner of Figure 5.2(b). Similarly, consider Figure 5.2(d),

one can use the first level of the hierarchical approach to get the first four velocities

and then apply a uniform grid solver on the upper right hand corner. Note that when

112 CHAPTER 5. COARSE GRID PROJECTION

solving these small matrices, one can use direct method, such as Cholesky factor-

ization since these matrices are symmetric positive definite after the extra degree of

freedom is eliminated. Because these systems are fairly quick to solve and because

there are many independent systems to solve, one can imagine using threads to solve

these systems simultaneously. This problem also lends itself well to specialized archi-

tectures such as the GPU that can very quickly execute many low cost processes. We

note that although we implemented and tested all of the above methods for the fine

local projections, for larger subgrids such as 8× 8× 8 we primarily used one level of

refinement with PCG as we found that this was fastest.

5.4 Discussion

In our examples section, we choose various examples of both smoke and water and

ran them using a standard method on a reasonable base grid. We then analyzed two

different strategies for using our method. One was to carry out grid refinements and

achieve scaling as exemplified by Equation (5.4) where the base grid resolution was

used for our projection in all finer grid simulations. This was done to illustrate that

very high resolution simulations can be run using our method without suffering the

curse of dimensionality on Ccp. As was proposed in [25], the vorticity confinement

used in the base simulation was reduced linearly proportional to the size of the grid

for the finer grid simulations. Even with less vorticity confinement we achieved sig-

nificantly more computational detail. We also consider whether our base simulation

could be accelerated using an even coarser grid for the projection step. As these

grids became coarser and coarser, for example sixteen grid cells in a dimension, we

did notice artifacts resulting from using our method. However, we stress that a fluid

simulation on a very low resolution grid would be enormously simplified as shown in

Figure 5.3. To alleviate these artifacts on the very coarse grid, we experimentally

verified that feasible but not spectacular results could be obtained by using a Kol-

molgorov spectrum similar to the one in [95] in combination with a 16× 32× 16 grid

but stress that it was only used in this one simulation to demonstrate that even at

5.4. DISCUSSION 113

resolutions we would not recommend, one could obtain a plausible result.

Figure 5.3: A comparison between (Left) a simulation using our method with a fine
resolution of 64×128×64 and a coarse resolution of 16×32×16 and (Right) without
using our method on a 16× 32× 16 grid.

Figure 5.4 illustrates that not all algorithms that scale according to Equation (5.4)

produce good results. Figure 5.4(c) is a baseline simulation on a 128 × 128 grid

to give a sense one would expect to obtain with a standard method. Figure 5.4(b)

shows our method on a 128 × 128 grid using a grid which was coarsened to 64 × 64

for the projection step. Note that figures 5.4(b) and (c) are quite similar in detail

and structure. Figure 5.4(a) uses our algorithm except that the fine grid projections

represented by Cfp are replaced with simple interpolation from the coarse grid. This

method would also scale as Equation (5.4) but produces inferior results. Not only

is detail lost, but more importantly, the structure of the smoke is lost due to added

viscosity. This exemplifies the need for the fine grid projections represented by Cfp in

order to obtain detail and structure that would be present on a finer grid. However,

we note that there are other techniques such as [50] and [122] that do not need to

run a large simulation. Instead they run a coarse simulation, upsample, and add

additional details from noise or particles at the fine resolution which also allows them

to also scale well.

We carried out this same comparison for the case of using a finer simulation resolu-

tion but using the same resolution for the projection as the base simulation shown in

114 CHAPTER 5. COARSE GRID PROJECTION

(a) (b) (c) (d) (e)

Figure 5.4: A 2D smoke simulation run with a 128×128 base grid. (a) is a simulation
on a 128×128 fine grid and a 64×64 coarse grid using interpolation. (b) is our method
using a 128× 128 grid and a 64× 64 grid for projection. (c) is a base simulation on
a 128× 128 grid. (d) is a simulation on a 256× 256 fine grid and a 128× 128 coarse
grid with interpolation. (e) is our method using a 256 × 256 grid with a 128 × 128
grid for projection.

Figure 5.4(c). Figure 5.4(e) shows the results obtained using our method. Note the

highly increased structure and detail whereas Figure 5.4(d), which is obtained using

interpolation, has no obvious added benefits over Figure 5.4(c). In summary, simply

using our coarsening methodology with linear interpolation loses large amounts of

detail in coarsening (Figure 5.4(c) becomes Figure 5.4(a)) and gains no detail when

refining (Figure 5.4(c) becomes Figure 5.4(d)). In contrast, our method preserves

detail when coarsening (Figure 5.4(c) becomes Figure 5.4(b)), and gains significantly

more detail when refining (Figure 5.4(c) becomes Figure 5.4(e)). Although our re-

sults do achieve similar details to the fine grid base simulation, our results do have

numerical differences. Figure 5.5 demonstrates the quantitative differences between

our method and a standard projection on the fine grid.

While not our original intent, we also explored using our technique for liquids. As

for smoke, refinement worked rather well. An added complication with water is in

dealing with the free surface where constant pressure Dirichlet boundary conditions

are imposed. Since the coarse grid does not contain the pressure degrees of freedom

to represent the boundary conditions on the fine grid, one has to either over or under

estimate mixed air/water regions. Failing to put constant pressure Dirichlet boundary

5.4. DISCUSSION 115

Figure 5.5: A quantitative comparison of our technique and a standard fluid simu-
lation. (Left) Our technique with a 128 × 256 fine grid and a 32 × 64 coarse gird.
(Center) The base simulation with a 128 × 256 grid. (Right) A comparison of the
velocities between the two techniques. The warmer colors illustrate bigger differences.
The maximum velocity error is about 1%.

conditions on the coarse grid cell means that that cell will be solved in a divergence-

free manner on the coarse grid, which is preserved by our mapping to the fine grid.

This means that any air pockets in that cell would not collapse properly. Moreover,

wave type forces that are created by different height columns of water would be lost.

If instead, the coarse cell constant pressure boundary condition is set, this treats the

whole cell as if it was air and may allow too much or too little flow inside as this cell

is not divergence free. This can result in underwater air pockets not only collapsing

but losing mass. We tried both of these methods and observed both phenomena to

some degree.

Because water waves are generated based on pressure differences one would expect

that water would be more sensitive to the coarse grid approximation than smoke.

However, we were pleasantly surprised to obtain reasonable simulation results as

shown in Figure 5.8. In our experience, refining a reasonable base simulation added

detail without noticeable issues until the surface started to become flat and at rest,

at which point some minor artifacts could be seen. Under coarsening, however, these

artifacts were harder to ignore. Therefore, we decided to use the coarse grid ap-

proximation to obtain the flow field only for cells interior to the water. We then

116 CHAPTER 5. COARSE GRID PROJECTION

collected all fine scale cells near the free surface for a second Poisson solve that used

the velocities from the fine grid projections as Neumann boundary conditions. We

defined cells near the free surface to be all fine grid cells inside any coarse cell that

contains a mixture of fluid and air. Performing this larger solve removed the artifacts

albeit adding to the computation cost. However, since the cells near the surface only

represent a lower dimensional set, essentially two spatial dimensions out of three, this

additional cost disappears under grid refinement, although on the grids we used there

was some overhead. We also note that this overhead tends to be fairly minimal be-

cause the surface solve is only needed during times with relatively calm fluid, making

the solution quicker to obtain.

5.5 Examples

We demonstrate the effectiveness of our algorithm on a number of smoke and water

simulations. All our smoke simulations contained a density source at the bottom of

the domain, and our water simulations contained a water source at the top of the

domain. Figure 5.4 shows two-dimensional smoke examples for illustration. We then

demonstrate our algorithm for three dimensional examples of smoke and water. For

each of these examples, we first ran a base simulation without using our method.

We then used our method to coarsen the projection resolution, which improves the

performance while maintaining similar looking results. We also used our method to

refine the base simulation, showing that we can achieve very detailed results in a

reasonable amount of time.

5.5.1 Smoke

We ran a number of three-dimensional smoke simulations as shown in figures 5.7 and

5.6. We would like to point out the stark differences in detail resulting from the

different structures of the smoke that can be achieved by using our method to refine

5.5. EXAMPLES 117

Figure 5.6: An example with smoke flowing around a static sphere. The large figure
is a 512× 1024× 512 simulation with a 64× 128× 64 coarse grid. The smaller figures
are comparisons of a simulation using different grid resolutions. The resolutions are
starting from the left to right, top to bottom: a 512× 1024× 512 simulation with a
64× 128× 64 coarse grid, a 256× 512× 256 simulation with a 64× 128× 64 coarse
grid, a 128× 256× 128 simulation with a 64× 128× 64 coarse grid, a 64× 128× 64
base simulation, a 64 × 128 × 64 simulation with a 32 × 64 × 32 coarse grid, and a
64× 128× 64 simulation with a 16× 32× 16 coarse grid with Kolmolgorov noise.

the grid resolution. For example, when comparing the smoke examples of Figure 5.7,

we achieve two distinct vortex rings in the high resolution example but only achieve

one with the lower resolutions. Also note the fine scale vorticies around the sphere

as shown in Figure 5.6.

5.5.2 Water

For water, we ran a number of simulations as shown in Figure 5.8. For these examples,

we used the surface solve towards the end of the simulations when the fluid starts

118 CHAPTER 5. COARSE GRID PROJECTION

Figure 5.7: An example with smoke flowing around a moving sphere. The Large figure
is a 512× 1024× 512 simulation with a 64× 128× 64 coarse grid. The smaller figures
are comparisons of a simulation using different grid resolutions. The resolutions are
starting from the left to right, top to bottom: a 512× 1024× 512 simulation with a
64× 128× 64 coarse grid, a 256× 512× 256 simulation with a 64× 128× 64 coarse
grid, a 128× 256× 128 simulation with a 64× 128× 64 coarse grid, a 64× 128× 64
base simulation, a 64 × 128 × 64 simulation with a 32 × 64 × 32 coarse grid, and a
64× 128× 64 simulation with a 16× 32× 16 coarse grid with Kolmolgorov noise.

to settle but did not when there is highly turbulent flow near the beginning of the

simulation. As with smoke, we can achieve a large amount of additional detail by

using our method to increase the resolution of the water.

5.5.3 Timing

The timings for our simulations are shown in Table 5.1. We compare our results with

those obtained by running a base simulation on the coarse grid, and a base simulation

on the refined grid. Note, for example, that our method runs approximately 67

5.5. EXAMPLES 119

Figure 5.8: An example with water pouring into a box. This is a comparison of a
simulation using different grid resolutions. The resolutions are starting from the left
to right, top to bottom: a 512× 512× 512 simulation with a 128× 128× 128 coarse
grid, a 256×256×256 simulation with a 128×128×128 coarse grid, a 128×128×128
base simulation, a 128× 128× 128 simulation with a 64× 64× 64 coarse grid, and a
128× 128× 128 simulation with a 32× 32× 32 coarse grid.

times faster on the high-resolution static sphere example, shown on line four of the

table above. This makes previously infeasible simulations tractable. An important

detail to note is that a base high-resolution simulation quickly runs up against hard

memory limits on a machine. This is partially alleviated with our method, as there

is significantly less memory access during the projection step.

When comparing our method to base simulations on the coarse grid, our method runs

slower when using a single processor. This is because a large amount of time is spent

in Cfp. However, our method scales well with a large number of processors, and we

achieve similar timings to the coarse grid base simulations for each time step. This is

because the cost of Cfp scales linearly and as a result, both algorithms are dominated

by the global projection (Ccp or Cp). We note that in some cases our method actually

runs more quickly per time step than the base simulation because we take smaller

time steps for a larger resolution grid.

120 CHAPTER 5. COARSE GRID PROJECTION

Example Fine Coarse Fine Coarse Ours
1 proc 1 proc 1 proc

Static Sphere 64× 128× 64 16× 32× 16 5.6m/34s 1.2s/0.4s 20s/2s
Static Sphere 64× 128× 64 32× 64× 32 5.6m/34s 4.5s/0.9s 20s/2s
Static Sphere 128× 256× 128 64× 128× 64 5.8h/7m 5.6m/34s 8.3m/25s
Static Sphere 256× 512× 256 64× 128× 64 50h/1h 5.6m/34s 1.6h/2m
Static Sphere 512× 1024× 512 64× 128× 64 - 5.6m/34s -
Moving Sphere 64× 128× 64 16× 32× 16 8m/32s 0.5s/0.1s 20s/2s
Moving Sphere 64× 128× 64 32× 64× 32 8m/32s 3s/0.6s 20s/2s
Moving Sphere 128× 256× 128 64× 128× 64 9h/7m 8m/32s 16m/31s
Moving Sphere 256× 512× 256 64× 128× 64 75h/1h 8m/32s 2.5h/2m
Moving Sphere 512× 1024× 512 64× 128× 64 - 8m/32s -
Water 128× 128× 128 32× 32× 32 2m/3s 25s/2.5s 1m/1.5s
Water 128× 128× 128 64× 64× 64 2m/3s 1m/3s 1m/1.5s
Water 256× 256× 256 128× 128× 128 43m/17s 2m/3s 11m/4.5s
Water 512× 512× 512 128× 128× 128 16h/3.2m 2m/3s 65m/13s
Example Fine Coarse Fine Coarse Ours

64 procs 64 procs 64 procs
Static Sphere 64× 128× 64 16× 32× 16 2.2m/13s 12s/4s 30s/3s
Static Sphere 64× 128× 64 32× 64× 32 2.2m/13s 30s/6s 1m/6s
Static Sphere 128× 256× 128 64× 128× 64 16m/19s 2.2m/13s 2.7m/8s
Static Sphere 256× 512× 256 64× 128× 64 2h/2.5m 2.2m/13s 9m/11s
Static Sphere 512× 1024× 512 64× 128× 64 47h/28m 2.2m/13s 43m/26s
Moving Sphere 64× 128× 64 16× 32× 16 2m/12s 15s/5s 40s/4s
Moving Sphere 64× 128× 64 32× 64× 32 2m/12s 45s/9s 1.1m/7s
Moving Sphere 128× 256× 128 64× 128× 64 10m/20s 2m/12s 6m/12s
Moving Sphere 256× 512× 256 64× 128× 64 3h/2.5m 2m/12s 17m/15s
Moving Sphere 512× 1024× 512 64× 128× 64 70h/28m 2m/12s 70m/28s
Water 128× 128× 128 32× 32× 32 2m/3s 25s/2.5s 1m/1.5s
Water 128× 128× 128 64× 64× 64 2m/3s 1m/3s 1m/1.5s
Water 256× 256× 256 128× 128× 128 43m/17s 2m/3s 11m/4.5s
Water 512× 512× 512 128× 128× 128 16h/3.2m 2m/3s 65m/13s

Table 5.1: Timing information for our examples as well as base simulations on the
fine and coarse grid using both 1 processor and 64 processors. Some large resolution
simulations (noted by -) could not be run on a single processor due to RAM restric-
tions. All of our timings are given in time per frame/time per time step. Note that
all examples were run at 24 frames per second and with a CFL number of 0.9.

5.6 Conclusions and Future Work

We have introduced a novel algorithm that improves the performance of existing fluid

simulations and can achieve realistic results using large fluid grids. Our algorithm

effectively reduces the amount of time required for the Poisson solve by using a coarse

5.6. CONCLUSIONS AND FUTURE WORK 121

grid projection and then small projections within each coarse grid cell.

Our performance analysis demonstrates that in Equation (5.1) computation schemes

can be divided into pieces where one piece scales well with the number of processors,

Cl, and the other piece scales poorly with the number of processors, Cp. A typical

Newton-Cotes quadrature formula suffers from the curse of dimensionality such that

refining the width by a factor of two requires that refinement in every dimension.

Thus in Equation (5.2), with three dimensions in space and one dimension in time,

the cost of each of these increases by k4. In section 2, we illustrate a strategy one

could use in designing general algorithms. In general, this can be done by writing

the code such that more of Cp scales better. The result is essentially putting more

computation into Cl. We propose a method that when solving the equations using

a Newton-Cotes quadrature style method, instead of refining every term as usual

getting k4 in front of all terms in Equation (5.2), we refine the terms that scale well

in Equation (5.4) in the usual manner with k4 but propose a different method for

solving the terms that do not scale well so that k can appear to a lower power. In

our specific case, this means dividing Cp into Ccp and Cfp where Ccp scales poorly

and Cfp scales well. For the remaining terms (such as Ccp) that do not scale well,

one might imagine using a Monte-Carlo style integration scheme which does not

suffer the curse of dimensionality. We would like to stress that simply having this

framework does not alone lead to improvements. Cheaper methods for solving Ccp

do not necessarily lead to good results. For example, linear averaging which fits into

the model of Equation (5.4) does scale rather well just like our proposed method but

unfortunately gives lack luster results.

Although our method was used to solve the Poisson equation for incompressible flow,

Equation (5.8) updates u? to un+1 by subtracting 1
ρ
∇p̂. This means that at every

face of our grid we define ∇p̂, the derivatives of p, on the entire grid. We can think

of this as solving a general Poisson equation ∇·
(

1
ρ
∇p
)

= f for some f . Our method

provides a technique for quickly and efficiently finding an approximation for ∇p on

the fine grid. Because many other applications make use of Poisson equations and/or

its derivatives, it would be interesting to explore the use of our methodology in those

122 CHAPTER 5. COARSE GRID PROJECTION

areas. However, one should be cautious of the fact that we are not doing a formal

Hodge decomposition, meaning that the divergence-free vector field that we get is not

the unique field that decomposes u? into a divergence-free field plus the gradient of a

scalar field. That being said, we have found that this approximation works very well

for our applications and is likely to do so for others.

One interesting avenue of future work would be to integrate our method with a

multigrid solver. Standard multigrid solvers often need special treatment for prob-

lems involving free surfaces, object boundaries, special exterior domain boundary

conditions, etc. Otherwise, their convergence rate can be a bit slow. The difficulty

lies in that multigrid solutions do not obtain a divergence free flow field until they

are fully converged (this is also true for cg and all traditional methods). Our method

provides an interesting twist in that it can be used as a prolongation operator for

multigrid and one might use a multigrid solver, feel that too much time is being

spent on convergence, and truncate the process earlier using our technique as a final

prolongation producing a divergence-free flow field. In that sense, one can compare

to techniques such as [36] where an iterative method is used to solve for contact, and

shock-propagation is used at the end in order to clean up the interpenetrations of the

geometry providing a visually reasonable result.

Chapter 6

Conclusions

In this dissertation, several algorithms for improving the performance and scalability

of fluid simulations have been presented. These algorithms improved both the advec-

tion and projection steps within incompressible flow. In Chapter 2 we introduced an

unconditionally stable fully conservative advection method based on the traditional

semi-Lagrangian method. We then demonstrated how this method can be augmented

to conserve mass and momentum in Chapters 3 and 4. In Chapter 5 we introduced

an easily parallelizable coarse grid projection method which can improve the per-

formance of the projection step by using two different resolution grids. Combining

these methods allows for the use of large time steps and thus can achieve significantly

higher resolution simulations using similar amounts of computational power as prior

methods.

While these methods allow for the simulation of higher resolutions to achieve high

fidelity details, these methods can also be used to approach real time simulation. In

this thesis, we have shown multiple orders of magnitudes in performance improvement

at high resolutions. However, this benefit is not as large at the resolutions that can

be used in real time. As an example, in Chapter 3 we demonstrated the large benefit

our method has when running at or near framerate using CFL numbers near 40.

However, these examples used high resolution grids which would not be possible in

123

124 CHAPTER 6. CONCLUSIONS

real time environments. At the resolutions that can be simulated in real time, the

CFL numbers that would be needed to achieve one time step per frame are closer

to 5. Additionally, the benefits of our projection method described in Chapter 5

depend on the difference in scales between the coarse and fine resolutions that are

used. Using the resolutions that can be achieved in real time limits this difference to

approximately a factor of two in order to achieve high quality results which reduces

the performance benefit obtained. As the amount of computational power increases,

the resolutions that can be achieved in real time will also increase allowing these

methods to offer larger performance improvements in the real time setting. However,

with the current state of hardware, other algorithms must be investigated to increase

the performance improvement when running relatively low resolutions that are similar

to the ones that can currently be achieved in real time.

In order to address low resolutions, the methods presented can be combined with

other performance improving methods such as adaptive grids [69, 43, 10]. It might

also be possible to combine this work with more efficient fluid algorithms such as those

used in model reduction [114]. However, the loss of visual fidelity caused by these

types of methods may be too great for use in real time environments. It would also be

interesting to apply this work to additional phenomena such as fire, multiphase flow,

and solid fluid coupling in order to achieve improved performance and scalability.

In addition, as we approach real time environments the problem of interactivity be-

comes important. We are currently investigating novel ways to interact with simula-

tions including dragging objects which can interact with fluids, and using other input

devices such as the Microsoft Kinect in order to control fluids through gesture recog-

nition. These algorithms not only require real time simulation but also interaction

with users meaning the computational power available to the simulator is less than it

would be if simulation was the only task. Investigating other methods of interaction

would make interesting future work.

Bibliography

[1] C. Batty, F. Bertails, and R. Bridson. A fast variational framework for accurate

solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.), 26(3):100, 2007.

[2] Christopher Batty, Stefan Xenos, and Ben Houston. Tetrahedral embedded

boundary methods for accurate and flexible adaptive fluids. In Proceedings of

Eurographics, 2010.

[3] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial dif-

ferential equations. J. Comput. Phys., 53:484–512, 1984.

[4] Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. A level-set method

for skinning animated particle data. In Proceedings of the 2011 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11,

2011.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse matrix solvers on the

gpu: Conjugate gradients and multigrid. ACM Trans. Graph. (SIGGRAPH

Proc.), 22(3):917–924, 2003.

[6] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for pro-

cedural fluid flow. ACM Trans. Graph., 26(3):46, 2007.

[7] T. Brochu, C. Batty, and R. Bridson. Matching fluid simulation elements to

surface geometry and topology. ACM Trans. Graph., 2010.

125

126 BIBLIOGRAPHY

[8] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: Animating the inter-

play between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.),

23:377–384, 2004.

[9] N. Chentanez, T. G. Goktekin, B. Feldman, and J. O’Brien. Simultaneous

coupling of fluids and deformable bodies. In ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 325–333, 2006.

[10] N Chentanez and M. Müller. Real-time Eulerian water simulation using a

restricted tall cell grid. In Proc. of ACM SIGGRAPH 2011, pages 82:1–82:10,

2011.

[11] Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien,

and Jonathan R. Shewchuk. Liquid simulation on lattice-based tetrahedral

meshes. In ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pages

219–228, 2007.

[12] D.L. Chopp. Another look at velocity extensions in the level set method. SIAM

J. Sci. Comput., 31:3255–3273, 2009.

[13] R. Codina, G. Houzeaux, H. Coppola-Owen, and J. Baiges. The fixed-mesh

ALE approach for the numerical approximation of flows in moving domains. J.

of Comp. Phys., 228(5):1591–1611, 2009.

[14] F. Colina, R. Egli, and F. Lin. Computing a null divergence velocity field using

smoothed particle hydrodynamics. J. Comput. Phys., 217:680–692, 2006.

[15] R. Courant, E. Issacson, and M. Rees. On the solution of nonlinear hyperbolic

differential equations by finite differences. Comm. Pure and Applied Math,

5:243–255, 1952.

[16] S. Cummins and M. Rudman. An SPH projection method. J. Comput. Phys.,

152(2):584–607, 1999.

BIBLIOGRAPHY 127

[17] M. Desbrun and M.-P. Cani. Smoothed particles: A new paradigm for animating

highly deformable bodies. In R. Boulic and G. Hegron, editors, Comput. Anim.

and Sim. ’96 (Proc. of EG Wrkshp. on Anim. and Sim.), pages 61–76. Springer-

Verlag, Aug 1996.

[18] T. Dupont and Y. Liu. Back and forth error compensation and correction meth-

ods for removing errors induced by uneven gradients of the level set function.

J. Comput. Phys., 190/1:311–324, 2003.

[19] T. Dupont and Y. Liu. Back and forth error compensation and correction

methods for semi-Lagrangian schemes with application to level set interface

computations. Math. Comp., 76(258):647–668, 2007.

[20] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set

method for improved interface capturing. J. Comput. Phys., 183:83–116, 2002.

[21] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-Lagrangian

particle level set method. Computers and Structures, 83:479–490, 2005.

[22] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex

water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):736–744, 2002.

[23] R. Fattal and D. Lischinski. Target-driven smoke animation. ACM Trans.

Graph. (SIGGRAPH Proc.), 23:441–448, 2004.

[24] R. Fedkiw, X.-D. Liu, and S. Osher. A general technique for eliminating spu-

rious oscillations in conservative schemes for multiphase and multispecies euler

equations. Int. J. Nonlinear Sci. and Numer. Sim., 3:99–106, 2002.

[25] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. In Proc. of

ACM SIGGRAPH 2001, pages 15–22, 2001.

[26] B. Feldman, J. O’Brien, and B. Klingner. Animating gases with hybrid meshes.

ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):904–909, 2005.

128 BIBLIOGRAPHY

[27] B. Feldman, J. O’Brien, B. Klingner, and T. Gok-

tekin. Fluids in deforming meshes. In

Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,

2005.

[28] N. Foster and R. Fedkiw. Practical animation of liquids. In Proc. of ACM

SIGGRAPH 2001, pages 23–30, 2001.

[29] N. Foster and D. Metaxas. Controlling fluid animation. In Comput. Graph.

Int., pages 178–188, 1997.

[30] Peter Frolkovic and Karol Mikula. High-resolution flux-based level set method.

SIAM J. Sci. Comput., 29:579–597, 2007.

[31] Yue Gao, Chen-Feng Li, Shi-Min Hu, and Brian A. Barsky. Simulating gaseous

fluids with low and high speeds. Comput. Graph. Forum, 28(7):1845–1852,

2009.

[32] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang. A second-order-accurate sym-

metric discretization of the Poisson equation on irregular domains. J. Comput.

Phys., 176:205–227, 2002.

[33] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics-theory

and application to nonspherical stars. Mon. Not. R. Astron. Soc., 181:375, 1977.

[34] N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini. An

Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J.

of Comput. Phys., 228(22):8380–8393, 2009.

[35] J.T. Grétarsson and R. Fedkiw. Two-way coupling of compressible flows and

thin deforming shells. (In Preparation), 2010.

[36] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with

stacking. ACM Trans. Graph. (SIGGRAPH Proc.), 22(3):871–878, 2003.

BIBLIOGRAPHY 129

[37] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling water and smoke

to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.),

24(3):973–981, 2005.

[38] F. Harlow and J. Welch. Numerical Calculation of Time-Dependent Viscous

Incompressible Flow of Fluid with Free Surface. Phys. Fluids, 8:2182–2189,

1965.

[39] Dalton J. E. Harvie and David F. Fletcher. A new volume of fluid advection

algorithm: the stream scheme. J. Comput. Phys., 162(1):1–32, 2000.

[40] C. Hirt, A. Amsden, and J. Cook. An arbitrary Lagrangian-Eulerian computing

method for all flow speeds. J. Comput. Phys., 135:227–253, 1974.

[41] J.-M. Hong and C.-H. Kim. Discontinuous fluids. ACM Trans. Graph.

(SIGGRAPH Proc.), 24(3):915–920, 2005.

[42] Christopher Horvath and Willi Geiger. Directable, high-resolution simulation

of fire on the gpu. ACM Trans. Graph., 28(3):1–8, 2009.

[43] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient simulation of

large bodies of water by coupling two and three dimensional techniques. ACM

Trans. Graph. (SIGGRAPH Proc.), 25(3):805–811, 2006.

[44] Taekwon Jang, Heeyoung Kim, Jinhyuk Bae, Jaewoo Seo, and Junyong Noh.

Multilevel vorticity confinement for water turbulence simulation. Vis. Comput.,

26:873–881, 2010.

[45] B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. Simulation of bubbles

in foam with the volume control method. In Proc. of ACM SIGGRAPH 2007,

pages 98:1–98:10, 2007.

[46] B.-M. Kim, Y. Liu, I. Llamas, and J. Rossignac. Using BFECC for fluid simu-

lation. In Eurographics Workshop on Natural Phenomena 2005, 2005.

130 BIBLIOGRAPHY

[47] B.-M. Kim, Y. Liu, I. Llamas, and J. Rossignac. Advections with significantly

reduced dissipation and diffusion. IEEE Trans. on Vis. and Comput. Graph.,

13(1):135–144, 2007.

[48] Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. Stretching and wiggling

liquids. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, pages

1–7, New York, NY, USA, 2009. ACM.

[49] Theodore Kim and Doug L. James. Skipping steps in deformable simulation

with online model reduction. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia

2009 papers, pages 1–9, 2009.

[50] Theodore Kim, Nils Thürey, Doug James, and Markus Gross. Wavelet turbu-

lence for fluid simulation. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,

pages 1–6, 2008.

[51] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.

O’Brien. Fluid animation with dynamic meshes. ACM Trans. Graph.,

25(3):820–825, 2006.

[52] S. Koshizuka, A. Nobe, and Y. Oka. Numerical analysis of breaking waves

using the moving particle semi-implicit method. Int. J. Num. Meth. in Fluids,

26:751–769, 1998.

[53] S. Koshizuka, H. Tamako, and Y. Oka. A particle method for incompressible

viscous flows with fluid fragmentation. Comput. Fluid Dyn. J, 1995.

[54] N. Kwatra, J. Su, J.T. Grétarsson, and R. Fedkiw. A method for avoiding

the acoustic time step restriction in compressible flow. J. Comput. Phys.,

228(11):4146–4161, 2009.

[55] Nipun Kwatra, Jón T. Grétarsson, and Ronald Fedkiw. Practical anima-

tion of compressible flow for shock waves and related phenomena. In ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., pages 207–215, 2010.

BIBLIOGRAPHY 131

[56] A. Lamorlette and N. Foster. Structural modeling of flames for a production

environment. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):729–735, 2002.

[57] M. Lentine and R. Fedkiw. Treating kinetic energy in incompressible flows. (In

Preparation), 2010.

[58] M. Lentine, J.T. Grétarsson, and R. Fedkiw. An unconditionally stable fully

conservative semi-lagrangian method. J. Comput. Phys., 230:2857–2879, 2011.

[59] M. Lentine, W. Zheng, and R. Fedkiw. A novel algorithm for incompressible

flow using only a coarse grid projection. ACM Transactions on Graphics, July

2010.

[60] Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. Mass and momentum

conservation for fluid simulation. In SCA ’11: Proceedings of the 2011 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 91–100,

2011.

[61] BP Leonard, AP Lock, and MK MacVean. Conservative explicit unrestricted-

time-step multidimensional constancy-preserving advection schemes. Monthly

Weather Review, 124:2588–2606, 1996.

[62] L.M. Leslie and R.J. Purser. Three-dimensional mass-conserving semi-

lagrangian scheme employing forward trajectories. Monthly Weather Review,

123(8), 1995.

[63] R.J. Leveque. A large time step generalization of godunov’s method for systems

of conservation laws. SIAM J. Num. Analysis, 22(6):1051–1073, 1985.

[64] S.J. Lin and R.B. Rood. Multidimensional flux-form semi-lagrangian transport

schemes. Monthly Weather Review, 24(9):2046–2070, 1996.

[65] P. Liovic, M. Rudman, J.L. Liow, D. Lakehal, and D. Kothe. A 3D unsplit-

advection volume tracking algorithm with planarity-preserving interface recon-

struction. Computers & Fluids, 35(10):1011–1032, 2006.

132 BIBLIOGRAPHY

[66] J. Liu, S. Koshizuka, and Y. Oka. A hybrid particle-mesh method for viscous,

incompressible, multiphase flows. J. Comput. Phys., 202(1):65–93, 2005.

[67] J. López, J. Hernández, P. Gómez, and F. Faura. A volume of fluid method

based on multidimensional advection and spline interface reconstruction. J. of

Comp. Phys., 195(2):718–742, 2004.

[68] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level set

methods and incompressible flow. Computers and Fluids, 35:995–1010, 2006.

[69] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an

octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.), 23:457–462,

2004.

[70] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting liquids.

ACM Trans. Graph. (SIGGRAPH Proc.), 25(3):812–819, 2006.

[71] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled sph and

particle level set fluid simulation. IEEE TVCG, 14(4):797–804, 2008.

[72] R. Loubčre and M.J. Shashkov. A subcell remapping method on staggered

polygonal grids for arbitrary-Lagrangian-Eulerian methods. J. of Comp. Phys.,

209(1):105–138, 2005.

[73] R. Loubčre, M. Staley, and B. Wendroff. The repair paradigm: new algorithms

and applications to compressible flow. J. of Comp. Phys., 211(2):385–404, 2006.

[74] L. Lucy. A numerical approach to the testing of the fission hypothesis.

Astronomical J., 82:1013–1024, 1977.

[75] R. MacCormack. The effect of viscosity in hypervelocity impact cratering. In

AIAA Hypervelocity Impact Conference, 1969. AIAA paper 69-354.

[76] LG Margolin and M. Shashkov. Remapping, recovery and repair on a stag-

gered grid. Computer Methods in Applied Mechanics and Engineering, 193(39-

41):4139–4155, 2004.

BIBLIOGRAPHY 133

[77] A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid poisson solver

for fluids simulation on large grids. In SCA/Eurographics Symp. on Comput.

Anim., pages 1–10, 2010.

[78] V. Mihalef, D. Metaxas, and M. Sussman. Animation and control of breaking

waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 315–324, 2004.

[79] V. Mihalef, D. N. Metaxas, and Mark Sussman. Simulation of two-phase flow

with sub-scale droplet and bubble effects. Comput. Graph. Forum, 2009.

[80] V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Hussaini.

Physics based boiling simulation. In SCA ’06: Proc. of the 2006 ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., pages 317–324, 2006.

[81] C. Min and F. Gibou. A second order accurate projection method for the in-

compressible Navier-Stokes equation on non-graded adaptive grids. J. Comput.

Phys., 219:912–929, 2006.

[82] J. Molemaker, J.M. Cohen, S. Patel, and J. Noh. Low viscosity flow

simulations for animation. In SCA ’08: Proceedings of the 2008 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages 9–18.

Eurographics Association, 2008.

[83] Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Des-

brun. Energy-preserving integrators for fluid animation. In SIGGRAPH ’09:

ACM SIGGRAPH 2009 papers, pages 1–8, 2009.

[84] Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu Desbrun. A

variational approach to eulerian geometry processing. ACM Trans. Graph.,

pages –1–1, 2007.

[85] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for

interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 154–159, 2003.

134 BIBLIOGRAPHY

[86] T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa. Exactly conservative semi-

Lagrangian scheme for multi-dimensional hyperbolic equations with directional

splitting technique. J. of Comp. Phys., 174(1):171–207, 2001.

[87] Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. Fast animation

of turbulence using energy transport and procedural synthesis. In SIGGRAPH

Asia ’08: ACM SIGGRAPH Asia 2008 papers, pages 1–8, New York, NY, USA,

2008. ACM.

[88] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and

Ken Museth. Guiding of smoke animations through variational coupling of

simulations at different resolutions. In SCA ’09: Proc. of the 2009 ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., pages 217–226, 2009.

[89] T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross. Scalable fluid simulation

using anisotropic turbulence particles. In ACM SIGGRAPH Asia 2010 papers,

SIGGRAPH ASIA ’10, pages 174:1–174:8, 2010.

[90] Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. Synthetic tur-

bulence using artificial boundary layers. In SIGGRAPH Asia ’09: ACM

SIGGRAPH Asia 2009 papers, pages 1–10, 2009.

[91] J. Pilliod and E. Puckett. Second-order accurate volume-of-fluid algorithms for

tracking material interfaces. J. Comput. Phys., 199:465–502, 2004.

[92] J.E. Pilliod et al. Second-order accurate volume-of-fluid algorithms for tracking

material interfaces* 1. J. of Comp. Phys., 199(2):465–502, 2004.

[93] D.J. Price. Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH.

J. of Comput. Phys., 227(24):10040–10057, 2008.

[94] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,

S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In

Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,

pages 193–202, 2004.

BIBLIOGRAPHY 135

[95] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw. Smoke simulation for

large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.), 22:703–707,

2003.

[96] W. Reeves. Particle systems - a technique for modeling a class of fuzzy objects.

In Comput. Graph. (Proc. of SIGGRAPH 83), volume 17, pages 359–376, 1983.

[97] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. J. Comput.

Phys., 141:112–152, 1998.

[98] P.J. Roache. A flux-based modified method of characteristics. Int. J. Num.

Meth. in Fluids, 15(11):1259–1275, 1992.

[99] A. Robinson-Mosher, T. Shinar, J.T. Grétarsson, J. Su, and R. Fedkiw. Two-

way coupling of fluids to rigid and deformable solids and shells. ACM Trans.

on Graphics, 27(3):46:1–46:9, August 2008.

[100] H. Schechter and R. Bridson. Evolving sub-grid turbulence for smoke anima-

tion. In SCA ’08: Proc. of the 2008 ACM SIGGRAPH/Eurographics Symp. on

Comput. Anim., pages 1–7, 2008.

[101] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An Unconditionally

Stable MacCormack Method. J. of Sci. Comp., 35(2):350–371, 2008.

[102] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke,

water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):910–914,

2005.

[103] J. Sewall, N. Galoppo, G. Tsankov, and M. Lin. Visual Simulation of Shock-

waves. Graphical Models, 2009.

[104] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory

shock capturing schemes II (two). J. Comput. Phys., 83:32–78, 1989.

[105] J. Stam. Stable fluids. In Proc. of SIGGRAPH 99, pages 121–128, 1999.

136 BIBLIOGRAPHY

[106] J. Stam and E. Fiume. Turbulent wind fields for gaseous phenomena. In Proc.

of SIGGRAPH 1993, pages 369–376, 1993.

[107] A. Staniforth and J. Cote. Semi-Lagrangian integration schemes for atmospheric

models: A review. Monthly Weather Review, 119:2206–2223, 1991.

[108] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151:616–648,

1999.

[109] M. Sussman. A second order coupled level set and volume-of-fluid method for

computing growth and collapse of vapor bubbles. J. Comput. Phys., 187:110–

136, 2003.

[110] M. Sussman and E. Puckett. A coupled level set and volume-of-fluid method for

computing 3D and axisymmetric incompressible two-phase flows. J. Comput.

Phys., 162:301–337, 2000.

[111] K. Takizawa, T. Yabe, and T. Nakamura. Multi-dimensional semi-

Lagrangian scheme that guarantees exact conservation. Computer Physics

Communications, 148(2):137–159, 2002.

[112] R. Tanaka, T. Nakamura, and T. Yabe. Constructing exactly conserva-

tive scheme in a non-conservative form. Computer Physics Communications,

126(3):232–243, 2000.

[113] S. Weißmann and U. Pinkall. Filament-based smoke with vortex shedding and

variational reconnection. ACM Trans. Graph., 2010.

[114] M Wicke, M Stanton, and A Treuille. Modular bases for fluid dynamics. ACM

Trans. Graph., 28(3):1–8, 2009.

[115] Martin Wicke, Matt Stanton, and Adrien Treuille. Modular bases for fluid

dynamics. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pages 1–8, New

York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 137

[116] Christopher Wojtan, N. Thürey, M. H. Gross, and G. Turk. Physics-inspired

topology changes for thin fluid features. ACM Trans. Graph., 2010.

[117] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid

flow with strong shocks. J. Comput. Phys., 54:115–173, April 1984.

[118] F. Xiao and T. Yabe. Completely conservative and oscillationless semi-

Lagrangian schemes for advection transportation. J. of Comp. Phys.,

170(2):498–522, 2001.

[119] T. Yabe, R. Tanaka, T. Nakamura, and F. Xiao. An exactly conservative semi-

Lagrangian scheme (CIP–CSL) in one dimension. Monthly Weather Review,

129:332–344, 2001.

[120] G. Yngve, J. O’Brien, and J. Hodgins. Animating explosions. In Proc. of ACM

SIGGRAPH 2000, pages 29–36, 2000.

[121] H. Yoon, S. Koshizuka, and Y. Oka. A particle-gridless hybrid method for

incompressible flows. Int. J. for Num. Meth. in Fluids, 30:407–424, 1999.

[122] Jong-Chul Yoon, Hyeong Ryeol Kam, Jeong-Mo Hong, Shin-Jin Kang, and

Chang-Hun Kim. Procedural synthesis using vortex particle method for fluid

simulation. Comput. Graph. Forum, 28(7):1853–1859, 2009.

[123] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids using

anisotropic kernels. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symp.

on Comput. Anim., 2010.

[124] S.T. Zalesak. Fully multidimensional flux-corrected transport algorithms for

fluids. J. of Comput. Phys., 31(3):335–362, 1979.

[125] M. Zerroukat, N. Wood, and A. Staniforth. Application of the parabolic spline

method (psm) to a multi-dimensional conservative semi-lagrangian transport

scheme (slice). J. of Comput. Phys., 225(1):935–948, 2007.

138 BIBLIOGRAPHY

[126] Q. Zhang and P.L.F. Liu. A new interface tracking method: The polygonal

area mapping method. J. of Comput. Phys., 227(8):4063–4088, 2008.

[127] Y. Zhu and R. Bridson. Animating sand as a fluid. ACM Trans. Graph.

(SIGGRAPH Proc.), 24(3):965–972, 2005.

